[1]张浩然,周阳,王铄辰,等.事件相关电位评估重复性亚脑震荡后认知损害的研究进展[J].中国临床神经外科杂志,2024,29(12):742-746.[doi:10.13798/j.issn.1009-153X.2024.12.009]
 ZHANG Hao-ran,ZHOU Yang,WANG Shuo-chen,et al.Advances in the evaluation of cognitive impairment after repeated subconcussion using event-related potentials[J].,2024,29(12):742-746.[doi:10.13798/j.issn.1009-153X.2024.12.009]
点击复制

事件相关电位评估重复性亚脑震荡后认知损害的研究进展()
分享到:

《中国临床神经外科杂志》[ISSN:1009-153X/CN:42-1603/TN]

卷:
29
期数:
2024年12期
页码:
742-746
栏目:
综述
出版日期:
2024-12-30

文章信息/Info

Title:
Advances in the evaluation of cognitive impairment after repeated subconcussion using event-related potentials
文章编号:
1009-153X(2024)12-0742-05
作者:
张浩然周阳王铄辰宋健
430081武汉,武汉科技大学医学院(张浩然);430070武汉,中国人民解放军中部战区总医院神经外科(张浩然、周阳、王铄辰、宋健);442000湖北十堰,湖北医药学院(周阳)
Author(s):
ZHANG Hao-ran12 ZHOU Yang23 WANG Shuo-chen2 SONG Jian2
1. School of Medicine, Wuhan University of Science and Technology, Wuhan 430081, China; 2. Department of Neurosurgery, General Hospital of Central Theater Command, PLA, Wuhan 430070, China; 3. Hubei University of Medicine, Shiyan 442000, China
关键词:
重复性亚脑震荡认知损害事件相关电位
Keywords:
Repetitive subconcussion Cognitive impairment Event-related potential
分类号:
R 651.1+5
DOI:
10.13798/j.issn.1009-153X.2024.12.009
文献标志码:
A
摘要:
重复性亚脑震荡是指头部受到反复的轻微撞击产生的脑损伤。虽然单次轻微撞击不足以引发明确的脑震荡症状,但是多次轻微撞击就会对大脑造成损伤。重复性亚脑震荡与长期神经功能改变和累积性脑损伤密切相关,可能增加神经退行性疾病的风险,从而导致认知功能的改变,使晚年的生活质量下降。事件相关电位技术可以客观地、准确地评估脑功能在重复性亚脑震荡暴露下的变化。本综述对近年来重复性亚脑震荡相关的事件相关电位研究进行回顾总结,为理解重复性亚脑震荡暴露损伤的神经机制提供参考。
Abstract:
Repetitive subconcussive concussion refers to brain injury resulting from repeated minor head impacts. Although a single minor impact is insufficient to induce definite concussion symptoms, multiple minor impacts can cause damage to the brain. Repetitive subconcussive concussion is closely associated with long-term neurofunctional alterations and cumulative brain injuries, potentially increasing the risk of neurodegenerative diseases, thereby resulting in changes in cognitive function and a decline in the quality of life in later years. Event-related potential technology can objectively and precisely evaluate the changes in brain function under repetitive subconcussive concussion exposure. This review summarizes the event-related potential studies related to repetitive subconcussive concussion in recent years, providing a reference for understanding the neural mechanisms of repetitive subconcussive concussion exposure-induced damage.

参考文献/References:

[1] OLICHNEY J, XIA J, CHURCH KJ, et al. Predictive power of cognitive biomarkers in neurodegenerative disease drugdevelopment: utility of the p300 event-related potential [J]. Neural Plast, 2022, 2022: 2104880.
[2] LEIVA-SALINAS C, SINGH A, LAYFIELD E, et al. Early brain amyloid accumulation at pet in military instructors exposed to subconcussive blast injuries [J]. Radiology, 2023, 307(5): e221608.
[3] MANLEY G, GARDNER AJ, SCHNEIDER KJ, et al. A systematic review of potential long-term effects of sport-related concussion [J]. Br J Sport Med, 2017, 51(12): 969-977.
[4] CHEN A, ZHANG Z, CAO C, et al. Altered attention network in paratroopers exposed to repetitive subconcussion: evidence based on behavioral and event-related potential results [J]. J Neurotrauma, 2021, 38(23): 3306-3314.
[5] SANCAR F. Subconcussive football hits may leave a telltale signature of brain damage [J]. JAMA, 2019, 322(16): 1537-1538.
[6] VANITALLIE TB. Traumatic brain injury (TBI) in collision sports: possible mechanisms oftransformation into chronic traumatic encephalopathy (CTE) [J]. Metabolism, 2019, 100S: 153943.
[7] FU Z, LIU M, WANG S, et al. Impairment of inhibitory control due to repetitive subconcussions from indirectbrain impacts: evidence from event-related potentials and resting-state EEGcomplexity in parachuters [J]. Brain Res Bull, 2024, 216: 111053.
[8] MONTENIGRO PH, ALOSCO ML, MARTIN BM, et al. Cumulative head impact exposure predicts later-life depression, apathy, executivedysfunction, and cognitive impairment in former high school and college footballplayers [J]. J Neurotrauma, 2017, 34(2): 328-340.
[9] MCKEE AC, DANESHVAR DH, ALVAREZ VE, et al. The neuropathology of sport [J]. Acta Neuropathol, 2014, 127(1): 29-51.
[10] CHEN A, ZHANG Z, CAO C, et al. Altered attention network in paratroopers exposed to repetitive subconcussion: evidence based on behavioral and event-related potential results [J]. J Neurotrauma, 2021, 38(23): 3306-3314.
[11] WU S, CHEN A, CAO C, et al. Repeated subconcussive exposure alters low-frequency neural oscillation in memoryretrieval processing [J]. J Neurotrauma, 2022, 39(5-6): 398-410.
[12] ERLANGER DM. Exposure to sub-concussive head injury in boxing and other sports [J]. Brain Inj, 2015, 29(2): 171-174.
[13] JOHNSON B, NEUBERGER T, GAY M, et al. Effects of subconcussive head trauma on the default mode network of the brain [J]. J Neurotrauma, 2014, 31(23): 1907-1913.
[14] PETERS A, HELMING H, BRUCHMANN M, et al. How and when social evaluative feedback is processed in the brain: a systematic review on ERP studies [J]. Cortex, 2024, 173: 187-207.
[15] GOSSELIN N, BOTTARI C, CHEN JK, et al. Evaluating the cognitive consequences of mild traumatic brain injury andconcussion by using electrophysiology [J]. Neurosurg Focus, 2012, 33(6): E1-E7.
[16] NGUYEN DP, LIN SC. A frontal cortex event-related potential driven by the basal forebrain [J]. Elife, 2014, 3: e2148.
[17] BROGLIO SP, ECKNER JT, PAULSON HL, et al. Cognitive decline and aging: the role of concussive and subconcussive impacts [J]. Exerc Sport Sci Rev, 2012, 40(3): 138-144.
[18] DEL PJ, SPIELMAN L, YEW B, et al. Detecting and predicting cognitive decline in individuals with traumatic braininjury: a longitudinal telephone-based study [J]. J Neurotrauma, 2024, 41(15-16): 1937-1947.
[19] SARRIAS-ARRABAL E, IZQUIERDO-AYUSO G, VOZQUEZMARRUFO M. Attentional networks in neurodegenerative diseases: anatomical and functionalevidence from the Attention Network Test [J]. Neurologia (Engl Ed), 2023, 38(3): 206-217.
[20] FAN J, BYRNE J, WORDEN MS, et al. The relation of brain oscillations to attentional networks [J]. J Neurosci, 2007, 27(23): 6197-6206.
[21] LUNA FG, AGUIRRE MJ, MARTON-ARAVALO E, et al. Eventrelated potentials associated with attentional networks evidence changes inexecutive and arousal vigilance [J]. Psychophysiology, 2023, 60(8): e14272.
[22] FICKLING SD, SMITH AM, STUART MJ, et al. Subconcussive brain vital signs changes predict head-impact exposure in ice hockey players [J]. Brain Commun, 2021, 3(2): fcab19.
[23] NASH K, TRAN A, LEOTA J, et al. Economic threat heightens conflict detection: sLORETA evidence [J]. Soc Cogn Affect Neurosci, 2020, 15(9): 981-990.
[24] LI Y, LIN Y, LI Q, et al. Temporal dynamics analysis reveals that concurrent working memory load eliminates the Stroop effect through disrupting stimulus-response mapping [Z]. eLife Sciences Publications, Ltd, 2024.
[25] SUTTON S, BRAREN M, ZUBIN J, et al. Evoked-potential correlates of stimulus uncertainty [J]. Science, 1965, 150(3700): 1187-1188.
[26] MENDES AJ, PACHECO-BARRIOS K, LEMA A, et al. Modulation of the cognitive event-related potential P3 by transcranial direct current stimulation: Systematic review and meta-analysis [J]. Neurosci Biobehav Rev, 2022, 132: 894-907.
[27] NOUR ES, BROTHERS T, WANG L, et al. A predictive coding model of the N400 [J]. Cognition, 2024, 246: 105755.
[28] FICKLING SD, POEL DN, DORMAN JC, et al. Subconcussive changes in youth football players: objective evidence using brain vital signs and instrumented accelerometers [J]. Brain Commun, 2022, 4(2): fcab286.
[29] MUNCE TA, FICKLING SD, NIJJER SR, et al. Mixed martial arts athletes demonstrate different brain vital sign profilescompared to matched controls at baseline [J]. Front Neurol, 2024, 15: 1438368.
[30] CHEYETTE SJ, PLAUT DC. Modeling the N400 ERP component as transient semantic over-activation within aneural network model of word comprehension [J]. Cognition, 2017, 162: 153-166.

备注/Memo

备注/Memo:
(2024-10-05收稿,2024-11-16修回)
通信作者:宋 健,Email:songjian0505@smu.edu.cn
更新日期/Last Update: 2024-12-30