[1]谢天浩 卢玉昭 王在贵 丁慧超 杨 铭 宋 健 徐国政 马廉亭.带有枕骨全颈椎三维有限元模型的构建及生物力学分析[J].中国临床神经外科杂志,2019,(11):681-684.[doi:10.13798/j.issn.1009-153X.2019.11.014]
 XIE Tian-hao,LU Yu-zhao,WANG Zai-gui,et al.Establishment and biomechanical analysis of a three-dimensional finite element model of whole cervical spine with occipital bone[J].,2019,(11):681-684.[doi:10.13798/j.issn.1009-153X.2019.11.014]
点击复制

带有枕骨全颈椎三维有限元模型的构建及生物力学分析 ()
分享到:

《中国临床神经外科杂志》[ISSN:1009-153X/CN:42-1603/TN]

卷:
期数:
2019年11期
页码:
681-684
栏目:
实验研究
出版日期:
2019-11-25

文章信息/Info

Title:
Establishment and biomechanical analysis of a three-dimensional finite element model of whole cervical spine with occipital bone
文章编号:
1009-153X(2019)11-0681-04
作者:
谢天浩 卢玉昭 王在贵 丁慧超 杨 铭 宋 健 徐国政 马廉亭
430070 武汉,中国人民解放军中部战区总医院神经外科(谢天浩、卢玉昭、王在贵、丁慧超、杨 铭、宋 健、徐国政、马廉亭)
Author(s):
XIE Tian-hao LU Yu-zhao WANG Zai-gui DING Hui-chao YANG Ming SONG Jia XU Guozheng MA Lianting.
Department of Neurosurgery, General Hospital, Central Theater, PLA, Wuhan 430070 China
关键词:
颅颈交界区颈椎脊柱生物力学三维有限元模型
Keywords:
Three-dimensional finite element model Whole cervical spine Occipital bone Biomechanical analysis
分类号:
R 651
DOI:
10.13798/j.issn.1009-153X.2019.11.014
文献标志码:
A
摘要:
目的 构建含有枕骨的全颈椎三维有限元模型,并验证其有效性,为颈椎及颅颈交界区疾病的生物力学研究提供良好的力学模型。方法 基于健康男性志愿者的枕颈部薄层CT构建模型,将CT的原始数据导入Mimics软件中,构建三维点云模型,进而导入Geomagic Studio软件构建全颈椎曲面模型,并在Hypermesh软件中进行实体网格划分、材料赋值等步骤构建枕骨~T1的全颈椎实体模型,最后导入有限元软件Abaqus进行有效性验证。结果 构建的带有枕骨的全颈椎有限元模型同真实脊柱解剖学形态一致,材料属性正确,且各节段活动度在既往文献标准差范围以内,通过了模型的有效性验证。结论 本研究所建立的带有枕骨的全颈椎有限元模型符合脊柱生物力学研究所要求的解剖学一致和生物力学相似,可用于颅颈交界区及颈椎的生物力学研究。
Abstract:
Objective To provide a biomechanical model for the study of decrease in the craniocervical junction and cervical spine. Methods The craniocervical thin-section CT scans of a healthy male volunteer was used to establish the three-dimensional (3D) finite element model of whole cervical spine with occipital bone.The DCIOM data of CT scans were used to reconstruct a 3D cervical point cloud model with Mimics, which was further used to build a NURBS surface model with Geomagic Studio. Then the curved surface model was imported into Hypermesh for mesh partitioning, material property assigning, contact and boundary condition defining. The range of motion of the model were analyzed and the effectiveness of the of model was validate in Abaqusto. Results The final intact model included all the critical components of cervical spine, and the predicted segmental motions were in the range of results that observed in previous studies. Conclusions The finite element model of the whole cervical spine with occipital bone was in concordance with the real anatomy and biomechanics, thus it can be used for biomechanical analysis of the craniocervical junction and cervical spine.

参考文献/References:

[1] Yoganandan N, Kumaresan S, Pintar FA. Biomechanics of the cervical spine Part 2: cervical spine soft tissue responses and biomechanical modeling [J]. Clin Biomech (Bristol, Avon), 2001, 16(1): 1-27. [2] Brolin K, Halldin P. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics [J]. Spine (Phila Pa 1976), 2004, 29 (4): 376-385. [3] Zhang H, Bai J. Development and validation of a finite element model of the occipito-atlantoaxial complex under physiologic loads [J]. Spine (Phila Pa 1976), 2007, 32(9): 968-974. [4] Zhang QH, Teo EC, Ng HW, et al. Finite element analysis of moment-rotation relationships for human cervical spine [J]. J Biomech, 2006, 39(1): 189-193. [5] Panzer MB, Fice JB, Cronin DS. Cervical spine response in frontal crash [J]. Med Eng Phys, 2011, 33(9): 1147-1159. [6] Lee SH, Im YJ, Kim KT, et al. Comparison of cervical spine biomechanics after fixed- and mobile-core artificial disc replacement: a finite element analysis [J]. Spine (Phila Pa 1976), 2011, 36(9): 700-708. [7] Yoganandan N, Kumaresan S, Pintar FA. Geometric and mechanical properties of human cervical spine ligaments [J]. J Biomech Eng, 2000, 122(6): 623-629. [8] Hussain M, Natarajan RN, An HS, et al. Motion changes in adjacent segments due to moderate and severe degeneration in C5-C6 disc: a poroelastic C3-T1 finite element model study [J]. Spine (Phila Pa 1976), 2010, 35(9): 939-947. [9] Bogduk N, Mercer S. Biomechanics of the cervical spine-- I: Normal kinematics [J]. Clin Biomech (Bristol, Avon), 2000, 15(9): 633-648. [10] Panjabi MM, Oxland TR, Parks EH. Quantitative anatomy of cervical spine ligaments--Part I: Upper cervical spine [J]. J Spinal Disord, 1991, 4(3): 270-276. [11] Penning L, Wilmink JT. Rotation of the cervical spine: A CT study in normal subjects [J]. Spine (Phila Pa 1976), 1987, 12(8): 732-738. [12] Ishii T, Mukai Y, Hosono N, et al. Kinematics of the cervical spine in lateral bending: in vivo three-dimensional analysis [J]. Spine (Phila Pa 1976), 2006, 31(2): 155-160. [13] Lind B, Sihlbom H, Nordwall A, et al. Normal range of motion of the cervical spine [J]. Arch Phys Med Rehabil, 1989, 70(9): 692-695. [14] Penning L. Normal movements of the cervical spine [J]. AJR Am J Roentgenol, 1978, 130(2): 317-326. [15] Ito S, Ivancic PC, Panjabi MM, et al. Soft tissue injury threshold during simulated whiplash: a biomechanical investigation [J]. Spine (Phila Pa 1976), 2004, 29(9): 979- 987. [16] Panjabi MM, Nibu K, Cholewicki J. Whiplash injuries and the potential for mechanical instability [J]. Eur Spine J, 1998, 7(6): 484-492. [17] Kallemeyn N, Gandhi A, Kode S, et al. Validation of a C2- C7 cervical spine finite element model using specimen- specific flexibility data [J]. Med Eng Phys, 2010, 32(5): 482-489. [18] Yoganandan N, Kumaresan S, Voo L, et al. Finite element applications in human cervical spine modeling [J]. Spine, 1996, 21(15): 1824-1834. [19] Steinmetz MP, Mroz TE, Benzel EC. Craniovertebral junc- tion: biomechanical considerations [J]. Neurosurgery, 2010, 66(3 Suppl): 7-12. [20] Wang HW, Ma LP, Yin YH, et al. Biomechanical rationale for the development of atlantoaxial instability and basilar invagination in patients with occipitalization of the atlas: a finite element analysis [J]. World Neurosurg, 2019, 127: e474-e479. [21] Cheng CH, Chien A, Hsu WL, et al. Investigation of the differential contributions of superficial and deep muscles on cervical spinal loads with changing head postures [J]. PLoS One, 2016, 11(3): e0150608.

相似文献/References:

[1]邬迎喜 薛亚飞 赵兰夫 赵天智 吕文海 陆 丹.颅底与颈椎脊索瘤13例临床分析[J].中国临床神经外科杂志,2015,(09):517.[doi:10.13798/j.issn.1009-153X.2015.09.002]
 WU Ying-xi,XUE Ya-fei,ZHAO Lan-fu,et al.Clinical analysis of 13 cases of chordomas in the skull base and cervical vertebrae[J].,2015,(11):517.[doi:10.13798/j.issn.1009-153X.2015.09.002]
[2]王 锐,陈春美,杨卫忠,等.神经电生理监测技术在椎间盘突出症显微手术中的应用[J].中国临床神经外科杂志,2016,(11):700.[doi:10.13798/j.issn.1009-153X.2016.11.016]
[3]谢天浩 综述 骆 纯 马廉亭 审校.颈椎椎管内肿瘤切除术中全椎板切除致颈椎畸形的危险因素及防治措施[J].中国临床神经外科杂志,2017,(01):58.[doi:10.13798/j.issn.1009-153X.2017.01.024]
[4]高宝成,张永发,太 柏,等.枕下远外侧入路手术切除颅颈交界区腹侧及腹外侧肿瘤[J].中国临床神经外科杂志,2019,(04):193.[doi:10.13798/j.issn.1009-153X.2019.04.001]
 GAO Bao-cheng,ZHANG Yong-fa,TAI Bai,et al.Neurosurgery via suboccipital far-lateral approach for the ventral and ventrolateral tumors in craniocervical junctions[J].,2019,(11):193.[doi:10.13798/j.issn.1009-153X.2019.04.001]
[5]谢天浩 马生辉 丁慧超 姚国杰 宋 健 徐国政 马廉亭.齿状突切除术后两种后路内固定方式的生物力学比较[J].中国临床神经外科杂志,2020,(07):447.[doi:10.13798/j.issn.1009-153X.2020.07.011]
 XIE Tian-hao,MA Sheng-hui,DING Hui-chao,et al.Biomechanical comparison of two posterior internal fixation methods after dentectomy[J].,2020,(11):447.[doi:10.13798/j.issn.1009-153X.2020.07.011]
[6]张圣坤 综述 初 明 审校.重建椎管稳定性的颈椎椎板成形术的研究进展[J].中国临床神经外科杂志,2020,(07):488.[doi:10.13798/j.issn.1009-153X.2020.07.026]
[7]黄 伟 陈 文 李 俊.以蛛网膜下腔出血发病的颅颈交界区动静脉瘘1例[J].中国临床神经外科杂志,2020,(08):574.[doi:10.13798/j.issn.1009-153X.2020.08.027]
[8]周龙,陈谦学,王军民,等.颅颈交界区血管病2例[J].中国临床神经外科杂志,2022,27(05):422.[doi:10.13798/j.issn.1009-153X.2022.05.031]
[9]徐田明,蔡栋阳,薛绛宇,等.颅颈交界区硬脊膜动静脉瘘的诊治进展[J].中国临床神经外科杂志,2022,27(07):614.[doi:10.13798/j.issn.1009-153X.2022.07.030]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81701355);武汉市中青年医学骨干人才培养工程 通讯作者:马廉亭,E-mail:mlt1937@163.com (2019-10-22收稿,2019-10-28修回)
更新日期/Last Update: 2019-11-20