[1]朱馨艺,邓钢,陈谦学.纳米药物递送系统在缺血性脑卒中的应用[J].中国临床神经外科杂志,2024,29(03):172-176.[doi:10.13798/j.issn.1009-153X.2024.03.011]
 ZHU Xin-yi,DENG Gang,CHEN Qian-xue.Application of nanomedicine delivery system in ischemic stroke[J].,2024,29(03):172-176.[doi:10.13798/j.issn.1009-153X.2024.03.011]
点击复制

纳米药物递送系统在缺血性脑卒中的应用()
分享到:

《中国临床神经外科杂志》[ISSN:1009-153X/CN:42-1603/TN]

卷:
29
期数:
2024年03期
页码:
172-176
栏目:
综述
出版日期:
2024-03-31

文章信息/Info

Title:
Application of nanomedicine delivery system in ischemic stroke
文章编号:
1009-153X(2024)03-0172-05
作者:
朱馨艺邓钢陈谦学
430060武汉,武汉大学人民医院神经外科(朱馨艺、邓钢、陈谦学)
Author(s):
ZHU Xin-yi DENG Gang CHEN Qian-xue
Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
关键词:
缺血性脑卒中发病机制纳米药物
Keywords:
Ischemic stroke Pathophysiological mechanisms Nanotechnology
分类号:
R 743
DOI:
10.13798/j.issn.1009-153X.2024.03.011
文献标志码:
A
摘要:
脑卒中是造成全球成年人死亡和残疾的主要原因之一。随着经济水平的提高,脑卒中逐渐年轻化。缺血性脑卒中是最常见的脑卒中形式,病理生理学机制复杂,诊断和治疗过程具有挑战性,至今仍然缺少有效的治疗方法。纳米技术的飞速发展给缺血性脑卒中的治疗带来了新的希望。本文将回顾脑卒中的病理生理机制、经典治疗方法,并总结现代纳米技术在缺血性脑卒中的诊断和治疗中的应用。
Abstract:
Stroke is one of the main causes of death and disability in adults worldwide. With the improvement of economic conditions, stroke is becoming younger. Ischemic stroke is the most common form of stroke, with a complex pathophysiological mechanism, challenging diagnosis and treatment, and no effective treatment to date. The rapid development of nanotechnology has brought new hope for the treatment of ischemic stroke. This article will review the pathophysiological mechanisms of stroke, classical treatment methods, and summarize the application of modern nanotechnology in the diagnosis and treatment of ischemic stroke.

参考文献/References:

[1]PAUL S, CANDELARIO-JALIL E. Emerging neuroprotective strategies for the treatment of ischemic stroke: an overview of clinical and preclinical studies [J]. Exp Neurol, 2021, 335: 113518.
[2]BADEN MY, SHAN Z, WANG F, et al. Quality of plant-based diet and risk of total, ischemic, and hemorrhagic stroke [J]. Neurology, 2021, 96(15): e1940-e53.
[3]BHASKAR S, STANWELL P, CORDATO D, et al. Reperfusion therapy in acute ischemic stroke: dawn of a new era [J]. BMC Neurol, 2018, 18(1): 8.
[4]ZHU T, WANG L, WANG LP, et al. Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: applications for natural compounds from medicinal herbs [J]. Biomed Pharmacother, 2022, 148: 112719.
[5]MC CARTHY DJ, MALHOTRA M, O'MAHONY AM, et al. Nanoparticles and the blood-brain barrier: advancing from in-vitro models towards therapeutic significance [J]. Pharm Res, 2015, 32 (4): 1161-85.
[6]PENG B, TONG Z, TONG W Y, et al. In situ surface modification of microfluidic blood-brain-barriers for improved screening of small molecules and nanoparticles [J]. ACS Appl Mater Interfaces, 2020, 12(51): 56753-66.
[7]QIN C, YANG S, CHU Y H, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions [J]. Signal Transduct Target Ther, 2022, 7(1): 215.
[8]XING Y, BAI Y. A review of exercise-induced neuroplasticity in ischemic stroke: pathology and mechanisms [J]. Mol Neurobiol, 2020, 57(10): 4218-31.
[9]CHEN J, JIN J, LI K, et al. Progresses and prospects of neuroprotective agents-loaded nanoparticles and biomimetic material in ischemic stroke [J]. Front Cell Neurosci, 2022, 16: 868323.
[10]WANG Z, LI X, SPASOJEVIC I, et al. Increasing O-GlcNAcylation is neuroprotective in young and aged brains after ischemic stroke [J]. Exp Neurol, 2021, 339: 113646.
[11]TAO T, LIU M, CHEN M, et al. Natural medicine in neuroprotection for ischemic stroke: challenges and prospective [J]. Pharmacol Ther, 2020, 216: 107695.
[12]REN J, TAEGTMEYER H. Too much or not enough of a good thing--the Janus faces of autophagy in cardiac fuel and protein homeostasis [J]. J Mol Cell Cardiol, 2015, 84: 223-226.
[13]AJOOLABADY A, WANG S, KROEMER G, et al. Targeting autophagy in ischemic stroke: From molecular mechanisms to clinical therapeutics [J]. Pharmacol Ther, 2021, 225: 107848.
[14]ZHANG B, SAATMAN K E, CHEN L. Therapeutic potential of natural compounds from Chinese medicine in acute and subacute phases of ischemic stroke [J]. Neural Regen Res, 2020, 15(3): 416-424.
[15]SHEN Z, XIANG M, CHEN C, et al. Glutamate excitotoxicity: potential therapeutic target for ischemic stroke [J]. Biomed Pharmacother, 2022, 151: 113125.
[16]HERPICH F, RINCON F. Management of acute ischemic stroke [J]. Crit Care Med, 2020, 48(11): 1654-1663.
[17]MOUSSADDY A, DEMCHUK AM, HILL MD. Thrombolytic therapies for ischemic stroke: triumphs and future challenges [J]. Neuropharmacology, 2018, 134(Pt B): 272-279.
[18]MAEDA H, WU J, SAWA T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review [J]. J Control Release, 2000, 65(1-2): 271-284.
[19]LI C, SUN T, JIANG C. Recent advances in nanomedicines for the treatment of ischemic stroke [J]. Acta Pharm Sin B, 2021, 11(7): 1767-1788.
[20]LANDOWSKI LM, NIEGO BE, SUTHERLAND BA, et al. Applications of nanotechnology in the diagnosis and therapy of stroke [J]. Semin Thromb Hemost, 2020, 46(5): 592-605.
[21]BHARADWAJ VN, NGUYEN DT, KODIBAGKAR VD, et al. Nanoparticle-based therapeutics for brain injury [J]. Adv Healthc Mater, 2018, 7(1): 10.1002/adhm.20170066.
[22]PARDRIDGE WM. Blood-brain barrier delivery [J]. Drug Discov Today, 2007, 12(1-2): 54-61.
[23]FUKUTA T, OKU N, KOGURE K. Application and utility of liposomal neuroprotective agents and biomimetic nanoparticles for the treatment of ischemic stroke [J]. Pharmaceutics, 2022, 14(2): 361.
[24]LU H, ZHANG S, WANG J, et al. A review on polymer and lipidbased nanocarriers and its application to nano-pharmaceutical and food-based systems [J]. Front Nutr, 2021, 8: 783831.
[25]PATEL RB, RAO HR, THAKKAR DV, et al. Comprehending the potential of metallic, lipid, and polymer-based nanocarriers for treatment and management of depression [J]. Neurochem Int, 2022, 153: 105259.
[26]KHARE P, EDGECOMB SX, HAMADANI CM, et al. Lipid nanoparticle-mediated drug delivery to the brain [J]. Adv Drug Deliv Rev, 2023, 197: 114861.
[27]WANG S, SARWAT M, WANG P, et al. Hydrogels with cell adhesion peptide-decorated channel walls for cell guidance [J]. Macromol Rapid Commun, 2020, 41(15): e2000295.
[28]FUKUTA T, ASAI T, SATO A, et al. Neuroprotection against cerebral ischemia/reperfusion injury by intravenous administration of liposomal fasudil [J]. Int J Pharmac, 2016, 506(1): 129-137.
[29]ISHII T, ASAI T, OYAMA D, et al. Treatment of cerebral ischemiareperfusion injury with PEGylated liposomes encapsulating FK506 [J]. FASEB J, 2013, 27(4): 1362-1370.
[30]GHEZZI M, PESCINA S, PADULA C, et al. Polymeric micelles in drug delivery: an insight of the techniques for their characterization and assessment in biorelevant conditions [J]. J Control Release, 2021, 332: 312-336.
[31]JIANG W, ZHOU Y, YAN D. Hyperbranched polymer vesicles: from self-assembly, characterization, mechanisms, and properties to applications [J]. Chem Soc Rev, 2015, 44(12): 3874-3889.
[32]WANG SS, CHOU NK, CHUNG TW. The t-PA-encapsulated PLGA nanoparticles shelled with CS or CS-GRGD alter both permeation through and dissolving patterns of blood clots compared with t-PA solution: an in vitro thrombolysis study [J]. J Biomed Mater Res A, 2009, 91(3): 753-761.
[33]CORREA-PAZ C, DA SILVA-CANDAL A, POLO E, et al. New approaches in nanomedicine for ischemic stroke [J]. Pharmaceutics, 2021, 13(5): 757.
[34]LIN G, MI P, CHU C, et al. Inorganic nanocarriers overcomingmultidrug resistance for cancer theranostics [J]. Adv Sci (Weinh), 2016, 3(11): 1600134.
[35]ZENYCH A, FOURNIER L, CHAUVIERRE C. Nanomedicine progress in thrombolytic therapy [J]. Biomaterials, 2020, 258: 120297.
[36]KIM DE, KIM JY, SCHELLINGERHOUT D, et al. Quantitative imaging of cerebral thromboemboli in vivo: the effects of tissuetype plasminogen activator [J]. Stroke, 2017, 48(5): 1376-1385.
[37]KWON SP, JEON S, LEE SH, et al. Thrombin-activatable fluorescent peptide incorporated gold nanoparticles for dual optical/ computed tomography thrombus imaging [J]. Biomaterials, 2018, 150: 125-136.
[38]MENDANHA D, VIEIRA DE CASTRO J, FERREIRA H, et al. Biomimetic and cell-based nanocarriers--new strategies for brain tumor targeting [J]. J Control Release, 2021, 337: 482-493.
[39]LI A, ZHAO J, FU J, et al. Recent advances of biomimetic nanosystems in the diagnosis and treatment of tumor [J]. Asian J Pharm Sci, 2021, 16(2): 161-174.
[40]FANG RH, GAO W, ZHANG L. Targeting drugs to tumours using cell membrane-coated nanoparticles [J]. Nat Rev Clin Oncol, 2023, 20(1): 33-48.
[41]WU H, ZHANG T, LI N, et al. Cell membrane-based biomimetic vehicles for effective central nervous system target delivery: insights and challenges [J]. J Control Release, 2023, 360: 169-184.
[42]VANKAYALA R, CORBER SR, MAC JT, et al. Erythrocyte-derived nanoparticles as a theranostic agent for near-infrared fluorescence imaging and thrombolysis of blood clots [J]. Macromol Biosci, 2018, 18(4): e1700379.
[43]TANG L, FU C, ZHANG A, et al. Harnessing nanobiotechnology for cerebral ischemic stroke management [J]. Biomater Sci, 2023, 11 (3): 791-812.

相似文献/References:

[1]杜彦挺 综述 潘亚文 审校.Moyamoya病的诊断和治疗的研究进展[J].中国临床神经外科杂志,2015,(12):761.[doi:10.13798/j.issn.1009-153X.2015.12.021]
[2]陈 娟 张华楸 综述 雷 霆 审校.库欣病发病机制的研究进展[J].中国临床神经外科杂志,2015,(10):594.[doi:10.13798/j.issn.1009-153X.2015.10.006]
[3]王米君 综述 舒 凯 审校.脑膜瘤瘤周水肿的研究现状[J].中国临床神经外科杂志,2015,(05):315.[doi:10.13798/j.issn.1009-153X.2015.05.022]
[4]宋 平 陈晓斌 杜 浩 蔡 强 罗 明 阮 航 吴京雷 段发亮.内膜斑块剥脱术治疗颈动脉狭窄的临床分析[J].中国临床神经外科杂志,2016,(09):527.[doi:10.13798/j.issn.1009-153X.2016.09.006]
 SONG Ping,CHEN Xiao-bin,DU Hao,et al.Clinical analysis of carotid endarterectomy for ischemic stroke[J].,2016,(03):527.[doi:10.13798/j.issn.1009-153X.2016.09.006]
[5]管得宁,张 扬,徐 运.帕金森病的发病机制及治疗研究进展[J].中国临床神经外科杂志,2016,(11):732.[doi:10.13798/j.issn.1009-153X.2016.11.031]
[6]陆丽娟,李玉凤,赵喜庆 综述,等.氯离子通道与胶质瘤的关系研究进展[J].中国临床神经外科杂志,2016,(12):803.[doi:10.13798/j.issn.1009-153X.2016.12.029]
[7]汪晓玲 倪志福 王云甫.依达拉奉联合氯吡格雷治疗老年缺血性脑卒中的效果与安全性分析[J].中国临床神经外科杂志,2017,(04):222.[doi:10.13798/j.issn.1009-153X.2017.04.005]
 WANG Xiao-ling,NI Zhi-fu,WANG Yun-fu..Curative effect of edaravone combined with clopidogrel on ischemic stroke and its safety in the elderly patients[J].,2017,(03):222.[doi:10.13798/j.issn.1009-153X.2017.04.005]
[8]吴 超 于 涛 王振宇 段丽萍.脊髓损伤后神经源性肠功能障碍的发生机制[J].中国临床神经外科杂志,2017,(04):282.[doi:10.13798/j.issn.1009-153X.2017.04.030]
[9]吕艳霞 李安荣 杨朋磊 综述 胡钧涛 审校.炎症反应在颅内动脉瘤发生中作用的研究进展[J].中国临床神经外科杂志,2017,(05):363.[doi:10.13798/j.issn.1009-153X.2017.05.030]
[10]段发亮,黄从刚,倪厚杰,等.阿司匹林联合氯吡格雷治疗缺血性脑卒中的疗效及对血小板聚集率的影响[J].中国临床神经外科杂志,2017,(07):470.[doi:10.13798/j.issn.1009-153X.2017.07.008]
 DUAN Fa-liang,HUANG Cong-gang,NI Hou-jie,et al.Curative effect of aspirin combined with plavix on ischemic stroke and its impact on platelet aggregation rate[J].,2017,(03):470.[doi:10.13798/j.issn.1009-153X.2017.07.008]

备注/Memo

备注/Memo:
(2023-12-25收稿,2024-03-08修回)
通信作者:陈谦学,Email:chenqx666@whu.edu.cn
更新日期/Last Update: 2024-03-31