[1]卜金鑫,朱海涛,徐宏浩,等.基于脑磁图的高频振荡在难治性癫痫中的研究进展[J].中国临床神经外科杂志,2024,29(08):491-494.[doi:10.13798/j.issn.1009-153X.2024.08.011]
 BU Jin-xin,ZHU Hai-tao,XU Hong-hao,et al.Research advances of high-frequency oscillations based on magnetoencephalography in intractable epilepsy[J].,2024,29(08):491-494.[doi:10.13798/j.issn.1009-153X.2024.08.011]
点击复制

基于脑磁图的高频振荡在难治性癫痫中的研究进展()
分享到:

《中国临床神经外科杂志》[ISSN:1009-153X/CN:42-1603/TN]

卷:
29
期数:
2024年08期
页码:
491-494
栏目:
综述
出版日期:
2024-08-30

文章信息/Info

Title:
Research advances of high-frequency oscillations based on magnetoencephalography in intractable epilepsy
文章编号:
1009-153X(2024)08-0491-04
作者:
卜金鑫朱海涛徐宏浩张锐
210029南京,南京医科大学附属脑科医院功能神经外科(卜金鑫、朱海涛、徐宏浩、张锐)
Author(s):
BU Jin-xin ZHU Hai-tao XU Hong-hao ZHANG Rui
Department of Functional Neurosurgery, Brain Hospital Affiliated of Nanjing Medical University, Nanjing 210029, China
关键词:
难治性癫痫癫痫灶切除术高频振荡脑磁图
Keywords:
Drug resistant epilepsy High frequency oscillations Magnetoencephalogram
分类号:
R 742.1
DOI:
10.13798/j.issn.1009-153X.2024.08.011
文献标志码:
A
摘要:
癫痫是多种原因导致的脑部神经元高度同步化异常放电所致的临床综合征。多数癫痫经药物治疗可得到有效控制,但有一部分癫痫病人对抗癫痫药物治疗反应差,癫痫发作难以控制,称为难治性癫痫。目前,癫痫灶切除术是治疗难治性癫痫的主要手段,切除术成功的关键是准确识别致痫灶。然而,如何准确定位致痫灶一直是神经外科的一项难题。既往,主要通过脑电图中棘波来定位致痫灶。2006年,有学者在局灶性癫痫病人颅内脑电图中记录到高频振荡。近年来,研究表明高频振荡比棘波能更具体地划定致痫灶的界限,可以作为致痫灶新的生理标识。本文主要就基于脑磁图的高频振荡在难治性癫痫中的研究进展进行综述。
Abstract:
Epilepsy is a clinical syndrome resulting from highly synchronized abnormal discharges of neurons caused by multiple factors. Most epilepsy can be effectively controlled through drug treatment; however, a portion of epilepsy patients show a poor response to antiepileptic drug therapy and have difficult-to-control seizures, which are referred to as refractory epilepsy. Currently, epilepsy focus resection is the main treatment method for refractory epilepsy, and the key to a successful resection lies in the accurate identification of the epileptogenic focus. Nevertheless, accurately locating the epileptogenic focus has consistently been a challenge in neurosurgery. Previously, the epileptogenic focus was mainly located through spike waves in the electroencephalogram (EEG). In 2006, high-frequency oscillations was found in the intracranial EEG of patients with focal epilepsy. In recent years, research has indicated that high-frequency oscillations can delineate the boundaries of the epileptogenic focus more specifically than spike waves and can serve as a new physiological marker of the epileptogenic focus. This article primarily reviews the research progress of high-frequency oscillations based on magnetoencephalography in refractory epilepsy.

参考文献/References:

[1]FISHER RS, VANEMDE BW, BLUME W, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE)[J]. Epilepsia, 2005, 46(4): 470-472.
[2]THOMSCHEWSKI A, HINCAPIE AS, FRAUSCHER B. Localization of the epileptogenic zone using high frequency oscillations[J]. Front Neurol, 2019, 10: 94.
[3]ALLEN PJ, FISH DR, SMITH SJ. Very high-frequency rhythmic activity during SEEG suppression in frontal lobe epilepsy[J]. Electroencephalogr Clin Neurophysiol, 1992, 82(2): 155-159.
[4]JIRSCH JD, URRESTARAZU E, LEVAN P, et al. High-frequency oscillations during human focal seizures[J]. Brain (London, England : 1878), 2006, 129(6): 1593-1608.
[5]KOBAYASHI K, OKA M, AKIYAMA T, et al. Very fast rhythmic activity on scalp EEG associated with epileptic spasms[J]. Epilepsia, 2004, 45(5): 488-496.
[6]XIANG J, LIU Y, WANG Y, et al. Frequency and spatial characteristics of high-frequency neuromagnetic signals in childhood epilepsy[J]. Epileptic Disord, 2009, 11(2): 113-125.
[7]ZIJLMANS M, WORRELL GA, DUMPELMANN M, et al. How to record high-frequency oscillations in epilepsy: a practical guideline [J]. Epilepsia, 2017, 58(8): 1305-1315.
[8]BRAZDIL M, PAIL M, HALAMEK J, et al. Very high-frequency oscillations: Novel biomarkers of the epileptogenic zone[J]. Ann Neurol, 2017, 82(2): 299-310.
[9]JEFFERYS JGR, MENENDEZDELAPRIDA L, WENDLING F, et al. Mechanisms of physiological and epileptic HFO generation[J]. Prog Neurobiol, 2012, 98(3): 250-264.
[10]BAILLET S. Magnetoencephalography for brain electrophysiology and imaging[J]. Nat Neurosci, 2017, 20(3): 327-339.
[11]CLARKE M, LARSON E, TAVABI K, et al. Effectively combining temporal projection noise suppression methods in magnetoencepha-lography[J]. J Neurosci Methods, 2020, 341: 108700.
[12]XIANG J, LUO Q, KOTECHA R, et al. Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals[J]. Front Neuroinform, 2014, 8: 57.
[13]BOSNYAKOVA D, GABOVA A, KUZNETSOVA G, et al. Time-frequency analysis of spike-wave discharges using a modified wavelet transform[J]. J Neurosci Methods, 2006, 154(1-2): 80-88.
[14]VANKLINK N, HILLEBRAND A, ZIJLMANS M. Identification of epileptic high frequency oscillations in the time domain by using MEG beamformer-based virtual sensors[J]. Clin Neurophysiol, 2016, 127(1): 197-208.
[15]OOSTENVELD R, FRIES P, MARIS E, et al. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data[J]. Comput Intell Neurosci, 2011, 2011: 156869.
[16]TADEL F, BAILLET S, MOSHER JC, et al. Brainstorm: a user-friendly application for MEG/EEG analysis[J]. Comput Intell Neurosci, 2011, 2011: 879716.
[17]HEDRICH T, PELLEGRINO G, KOBAYASHI E, et al. Comparison of the spatial resolution of source imaging techniques in high-density EEG and MEG[J]. NeuroImage, 2017, 157: 531-544.
[18]VANKLINK N, MOOIJ A, HUISKAMP G, et al. Simultaneous MEG and EEG to detect ripples in people with focal epilepsy[J]. Clin Neurophysiol, 2019, 130(7): 1175-1183.
[19]XIANG J, WANG Y, CHEN Y, et al. Noninvasive localization of epileptogenic zones with ictal high-frequency neuromagnetic signals [J]. J Neurosurg Pediatr, 2010, 5(1): 113-122.
[20]MIAO A, XIANG J, TANG L, et al. Using ictal high-frequency oscillations (80–500Hz) to localize seizure onset zones in childhood absence epilepsy: a MEG study[J]. Neurosci Lett, 2014, 566: 21-26.
[21]VELMURUGAN J, NAGARAJAN SS, MARIVAPPA N, et al. Magnetoencephalographic imaging of ictal high-frequency oscillations (80-200 Hz) in pharmacologically resistant focal epilepsy[J]. Epilepsia, 2018, 59(1): 190-202.
[22]LUO L, ZHU HT, XU HH, et al. Application of magnetoencephalo-graphic accumulated source imaging in preoperative assessment of patients with refractory temporal lobe epilepsy[J]. Chin J Clin Neurosurg, 2021, 26(2): 72-76. 罗 磊,朱海涛,徐宏浩,等. MEG累积源成像在药物难治性颞叶癫痫术前评估中的应用[J]. 中国临床神经外科杂志,2021,26(2):72-76.
[23]YIN C, ZHANG X, CHEN Z, et al. Detection and localization of interictal ripples with magnetoencephalography in the presurgical evaluation of drug-resistant insular epilepsy[J]. Brain Res, 2019, 1706: 147-156.
[24]FOLEY E, QUITADAMO LR, WALSH AR, et al. MEG detection of high frequency oscillations and intracranial-EEG validation in pediatric epilepsy surgery[J]. Clin Neurophysiol, 2021, 132(9): 2136-2145.
[25]TAMILIA E, DIRODI M, ALHILANI M, et al. Scalp ripples as prognostic biomarkers of epileptogenicity in pediatric surgery[J]. Ann Clin Transl Neurol, 2020, 7(3): 329-342.
[26]VELMURUGAN J, NAGARAJAN SS, MARIYAPPA N, et al. Magnetoencephalography imaging of high frequency oscillations streng-thens presurgical localization and outcome prediction[J]. Brain, 2019, 142(11): 3514-3529.
[27]XU N, SHAN W, QI J, et al. Presurgical Evaluation of epilepsy using resting-state meg functional connectivity[J]. Front Hum Neurosci, 2021, 15: 649074.
[28]NISSEN IA, VANKLINK NE, ZIJLMANS M, et al. Brain areas with epileptic high frequency oscillations are functionally isolated in MEG virtual electrode networks[J]. Clin Neurophysiol, 2016, 127 (7): 2581-2591.
[29]MENG L. A magnetoencephalography study of pediatric interictal neuromagnetic activity changes and brain network alterations caused by epilepsy in the high frequency (80-1000 Hz)[J]. IEEE Trans Neural Syst Rehabil Eng, 2019, 27(3): 389-399.
[30]YIN C, ZHANG X, XIANG J, et al. Altered effective connectivity network in patients with insular epilepsy: a high-frequency oscillations magnetoencephalography study[J]. Clin Neurophysiol, 2020, 131(2): 377-384.

相似文献/References:

[1]杨朋范 梅 珍 张辉建 裴家生 林 巧 贾延增 钟忠辉.颞顶枕离断术治疗儿童单侧多脑叶难治性癫痫[J].中国临床神经外科杂志,2015,(10):605.[doi:10.13798/j.issn.1009-153X.2015.10.009]
 YANG Peng-fan,MEI Zhen,ZHANG Hui-jian,et al.Disconnective surgery for unilateral posterior quadrantic epilepsy: a series of 17 paediatric patients[J].,2015,(08):605.[doi:10.13798/j.issn.1009-153X.2015.10.009]
[2]徐志明 综述 王桂松 审校.外周神经电刺激治疗难治性癫痫研究现状[J].中国临床神经外科杂志,2015,(05):309.[doi:10.13798/j.issn.1009-153X.2015.05.020]
[3]杜 浩 黄玲玥 向 露 刘 琴 吕丽辉 陈璐璐 徐国政.难治性癫痫致痫灶的术前常用评估方法及有效性分析[J].中国临床神经外科杂志,2017,(04):224.[doi:10.13798/j.issn.1009-153X.2017.04.006]
 DU Hao,HUANG Ling-yue,XIANG Lu,et al.Common methods to evaluate refractory epilepsy preoperatively and their effects on localization of epileptogenic foci[J].,2017,(08):224.[doi:10.13798/j.issn.1009-153X.2017.04.006]
[4]刘长青 陈思畅 关宇光 周 健 翟 峰 栾国明.Sturge-Weber综合征所致难治性癫痫的手术治疗[J].中国临床神经外科杂志,2017,(06):379.[doi:10.13798/j.issn.1009-153X.2017.06.004]
 LIU Chang-qing,CHEN Si-chang,GUAN Yu-guang,et al.Surgery for refractory epilepsy caused by Sturge-Weber syndrome[J].,2017,(08):379.[doi:10.13798/j.issn.1009-153X.2017.06.004]
[5]潘军红 顾晶晶 周 健 关宇光 栾国明.丘脑前核电刺激术治疗难治性癫痫的围手术期护理[J].中国临床神经外科杂志,2017,(06):388.[doi:10.13798/j.issn.1009-153X.2017.06.007]
[6]邱 勇 乔 旭 蔡永庆 徐海龙.立体定向海马-杏仁核损毁术治疗难治性癫痫致右动眼神经麻痹1例[J].中国临床神经外科杂志,2018,(08):570.[doi:doi:10.13798/j.issn.1009-153X.2018.08.022]
[7]刘长青 程 前 关宇光 栾国明.机器人引导立体脑电射频毁损治疗下丘脑错构瘤所致癫痫[J].中国临床神经外科杂志,2019,(08):489.[doi:10.13798/j.issn.1009-153X.2019.08.013]

备注/Memo

备注/Memo:
(2022-05-14收稿,2024-01-03修回)
通信作者,张 锐,Email:neurosurgeonzr@njmu.edu.cn
更新日期/Last Update: 2024-08-30