[1]李勇勇,赵开胜.靶向抗炎治疗颈动脉粥样硬化的研究进展[J].中国临床神经外科杂志,2024,29(11):682-685.[doi:10.13798/j.issn.1009-153X.2024.11.010]
 LI Yong-yong,ZHAO Kai-sheng.Research progress of targeted anti-inflammatory therapy for carotid atherosclerosis[J].,2024,29(11):682-685.[doi:10.13798/j.issn.1009-153X.2024.11.010]
点击复制

靶向抗炎治疗颈动脉粥样硬化的研究进展()
分享到:

《中国临床神经外科杂志》[ISSN:1009-153X/CN:42-1603/TN]

卷:
29
期数:
2024年11期
页码:
682-685
栏目:
综述
出版日期:
2024-11-30

文章信息/Info

Title:
Research progress of targeted anti-inflammatory therapy for carotid atherosclerosis
文章编号:
1009-153X(2024)11-0682-04
作者:
李勇勇赵开胜
716000陕西延安,延安大学医学院(李勇勇);716000陕西延安,延安大学附属医院神经外科(赵开胜)
Author(s):
LI Yong-yong1 ZHAO Kai-sheng2
1. School of Medicine, Yan'an University, Yan'an 716000, China; 2. Department of Neurosurgery, Affiliated Hospital of Yan'an University, Yan'an 716000, China
关键词:
颈动脉粥样硬化炎症因子靶向治疗
Keywords:
Carotid atherosclerosis Inflammatory factors Targeted anti-inflammatory therapy
分类号:
R 743
DOI:
10.13798/j.issn.1009-153X.2024.11.010
文献标志码:
A
摘要:
颈动脉粥样硬化(CAS)是一种慢性炎症性疾病,炎症因子与炎症反应的反复作用导致颈动脉粥样斑块越来越厚,进而加重颈动脉狭窄程度,增加脑卒中风险。目前,临床主要依据斑块的大小或管腔狭窄程度评估颈动脉粥样斑块导致血管管腔狭窄、斑块脱落导致血管闭塞的风险。有效预防或抑制CAS进展的疗法仅限于使用药物降低低密度脂蛋白胆固醇(LDL-C)。然而,即使最大程度的降低LDL-C也不能预防重大不良脑血管事件。这可能与关键因素——炎症增加颈动脉斑块的破裂风险有关。因此,CAS需要更精准的破裂风险评估、有效的预防策略和更好的治疗方法。本文对炎症因子与CAS、抗炎症因子治疗的研究进展进行阐述。
Abstract:
Carotid atherosclerosis (CAS) is a disease driven by chronic inflammation. Inflammatory factors and recurrent inflammatory responses contribute to the gradual thickening of carotid atherosclerotic plaques, thereby exacerbating the degree of carotid stenosis and elevating the risk of ischemic stroke. Currently, in the clinical setting, the assessment of plaque size or the degree of lumen stenosis is predominantly employed to determine the risk of vascular stenosis induced by carotid atherosclerotic plaques and vascular occlusion resulting from plaque rupture. Although reducing low-density lipoprotein cholesterol (LDL-C) serves as the principal pharmacological treatment for preventing and inhibiting the progression of CAS at present, even with the maximal reduction of LDL-C levels, the occurrence of major adverse cerebrovascular events cannot be completely precluded. This might be associated with the crucial role of inflammation in promoting carotid plaque rupture. Hence, CAS demands more precise rupture risk assessment, effective prevention strategies, and superior treatment approaches. This article reviews the relationship between inflammatory factors and CAS as well as the research progress of anti-inflammatory therapy.

参考文献/References:

[1] HUANG P, HE XY, XU M. The role of miRNA-146a and proinflammatory cytokines in carotid atherosclerosis [J]. Biomed Res Int, 2020, 2020: 6657734.
[2] VAN DER HEIDEN K, BARRETT HE, MEESTER EJ, et al. SPECT/CT imaging of inflammation and calcification in human carotid atherosclerosis to identify the plaque at risk of rupture [J]. J Nucl Cardiol, 2022, 29(5): 2487-2496.
[3] WOLF D, LEY K. Immunity and inflammation in atherosclerosis [J]. Circ Res, 2019, 124(2): 315-327.
[4] MELNIKOV I, KOZLOV S, POGORELOVA O, et al. The monomeric C-reactive protein level is associated with the increase in carotid plaque number in patients with subclinical carotid atherosclerosis [J]. Front Cardiovasc Med, 2022, 9: 968267.
[5] LIU L, YI X, LUO H, et al. Inflammation and endothelial function relevant genetic polymorphisms in carotid stenosis in southwestern China [J]. Front Neurol, 2023, 13: 1076898.
[6] ROSS R. Atherosclerosis--an inflammatory disease [J]. N Engl J Med, 1999,340(2): 115-126.
[7] KONG P, CUI ZY, HUANG XF, et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention [J]. Signal Transduct Target Ther, 2022, 7(1): 131.
[8] TALEB S. Inflammation in atherosclerosis [J]. Arch Cardiovasc Dis, 2016, 109(12): 708-715.
[9] BACK M, YURDAGUL A JR, TABAS I, et al. Inflammation and its resolution in atherosclerosis: mediators and therapeutic opportunities [J]. Nat Rev Cardiol, 2019, 16(7): 389-406.
[10] RIDKER PM, EVERETT BM, THUREN T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease [J]. N Engl J Med, 2017, 377(12): 1119-1131.
[11] LIBBY P. Inflammation in atherosclerosis-no longer a theory [J]. Clin Chem, 2021, 67(1): 131-142.
[12] NIDORF SM, FIOLET ATL, MOSTERD A, et al. Colchicine in patients with chronic coronary disease [J]. N Engl J Med, 2020, 383 (19): 1838-1847.
[13] SOEHNLEIN O, LIBBY P. Targeting inflammation in atherosclerosis-from experimental insights to the clinic [J]. Nat Rev Drug Discov, 2021, 20(8): 589-610.
[14] MELNIKOV I, KOZLOV S, SABUROVA O, et al. Monomeric Creactive protein in atherosclerotic cardiovascular disease: advances and perspectives [J]. Int J Mol Sci, 2023, 24(3): 2079.
[15] SU H, PEI Y, TIAN C, et al. Relationship between high-sensitivity c-reactive protein and subclinical carotid atherosclerosis stratified by glucose metabolic status in Chinese adults [J]. Clin Cardiol, 2019, 42(1): 39-46.
[16] ALVAREZ GARCIA B, RUIZ C, CHACON P, et al. High-sensitivity c-reactive protein in high-grade carotid stenosis: risk marker for unstable carotid plaque [J]. J Vasc Surg, 2003, 38(5): 1018-1024.
[17] ARTHURS ZM, ANDERSEN C, STARNES BW, et al. A prospective evaluation of c-reactive protein in the progression of carotid artery stenosis [J]. J Vasc Surg, 2008, 47(4): 744-751.
[18] GRUNDY SM, STONE NJ, BAILEY AL, et al. 2018 AHA/ACC/ AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: executive summary: a report of the American college of cardiology/American heart association task force on clinical practice guidelines [J]. J Am Coll Cardiol, 2019, 73(24): 3168-3209.
[19] ZHANG W, SPEISER JL, YE F, et al. High-sensitivity c-reactive protein modifies the cardiovascular risk of lipoprotein(a): multiethnic study of atherosclerosis [J]. J Am Coll Cardiol, 2021, 78(11): 1083-1094.
[20] TANAKA T, NARAZAKI M, KISHIMOTO T. Interleukin (IL-6) immunotherapy [J]. Cold Spring Harb Perspect Biol, 2018, 10(8): a028456.
[21] KAMTCHUM-TATUENE J, SABA L, HELDNER MR, et al. Interleukin-6 predicts carotid plaque severity, vulnerability, and progression [J]. Circ Res, 2022, 131(2): e22-e33.
[22] ZIEGLER L, LUNDQVIST J, DREIJ K, et al. Expression of interleukin 6 signaling receptors in carotid atherosclerosis [J]. Vasc Med, 2021, 26(1): 3-10.
[23] PEPYS MB, HIRSCHFIELD GM, TENNENT GA, et al. Targeting creactive protein for the treatment of cardiovascular disease [J]. Nature, 2006, 440(7088): 1217-1221.
[24] JIMENEZ RV, SZALAI AJ. Therapeutic lowering of c-reactive protein [J]. Front Immunol, 2021, 11: 619564.
[25] JONES NR, PEGUES MA, MCCRORY MA, et al. A selective inhibitor of human c-reactive protein translation is efficacious in vitro and in c-reactive protein transgenic mice and humans [J]. Mol Ther Nucleic Acids, 2012, 1(11): e52.
[26] NOVECK R, STROES ES, FLAIM JD, et al. Effects of an antisense oligonucleotide inhibitor of c-reactive protein synthesis on the endotoxin challenge response in healthy human male volunteers [J]. J Am Heart Assoc, 2014, 3(4): e001084.
[27] YU Q, LIU Z, WAQAR AB, et al. Effects of antisense oligonucleotides against c-reactive protein on the development of atherosclerosis in WHHL rabbits [J]. Mediators Inflamm, 2014, 2014: 979132.
[28] ZELLER J, CHEUNG TUNG SHING KS, NERO TL, et al. A novel phosphocholine-mimetic inhibits a pro-inflammatory conformational change in c-reactive protein [J]. EMBO Mol Med, 2023, 15 (1): e16236.
[29] BROCH K, ANSTENSRUD AK, WOXHOLT S, et al. Randomized trial of interleukin-6 receptor inhibition in patients with acute stsegment elevation myocardial infarction [J]. J Am Coll Cardiol, 2021,77(15): 1845-1855.
[30] WADA Y, JENSEN C, MEYER ASP, et al. Efficacy and safety of interleukin-6 inhibition with ziltivekimab in patients at high risk of atherosclerotic events in Japan (RESCUE-2): a randomized, double-blind, placebo-controlled, phase 2 trial [J]. J Cardiol, 2023, 82(4): 279-285.

相似文献/References:

[1]孙 鹏 综述 王 涛 审校.颈动脉粥样硬化易损斑块及其相关生化标志物研究进展[J].中国临床神经外科杂志,2016,(03):188.[doi:10.13798/j.issn.1009-153X.2016.03.022]
[2]李 琳 刘 玮 洪 畋 刘佳妮 葛小金 王 芳.卒中相关性肺炎血清炎症因子和外周血淋巴细胞亚群的分析[J].中国临床神经外科杂志,2019,(12):740.[doi:10.13798/j.issn.1009-153X.2019.12.007]
 LI Lin,LIU Wei,LIU Jia-ni,et al.Analysis of serum inflammatory factors and peripheral blood lymphocyte subsets in patients with stroke-associated pneumonia[J].,2019,(11):740.[doi:10.13798/j.issn.1009-153X.2019.12.007]
[3]贾 杉 鲁德忠.TLR4基因突变对小鼠坐骨神经损伤修复的影响[J].中国临床神经外科杂志,2019,(12):755.[doi:10.13798/j.issn.1009-153X.2019.12.012]
 JIA Shan,LU De-zhong..Effect of inflammatory factors expression induced by Toll-like receptor 4 mutation on repair of injured sciatic nerve[J].,2019,(11):755.[doi:10.13798/j.issn.1009-153X.2019.12.012]
[4]杨 华 何强华 张爱华 李 扬 陈 兵.丹参酮ⅡA通过抑制TLR4/NF-κB途径减轻糖氧剥夺对大鼠脑微血管内皮细胞的炎症损伤[J].中国临床神经外科杂志,2020,(09):610.[doi:10.13798/j.issn.1009-153X.2020.09.011]
 YANG Hua,HE Qiang-hua,ZHANG Ai-hua,et al.Tanshinone ⅡA relieves inflammatory damage of cerebral microvascular endothelial cells induced by oxygen glucose deprivation via inhibition of TLR4/NF-κB pathway[J].,2020,(11):610.[doi:10.13798/j.issn.1009-153X.2020.09.011]

备注/Memo

备注/Memo:
(2023-09-19收稿,2024-03-27修回)
通信作者:赵开胜,Email:zhaokaisheng0703@163.com
更新日期/Last Update: 2024-11-30