[1]黄文,李明阳,张勇刚,等.ADS032对急性缺血性脑卒中小鼠的神经保护作用[J].中国临床神经外科杂志,2024,29(07):415-421.[doi:10.13798/j.issn.1009-153X.2024.07.007]
 HUANG Wen,LI Ming-yang,ZHANG Yong-gang,et al.Neuroprotective effect of ADS032 on acute ischemic stroke in mice[J].,2024,29(07):415-421.[doi:10.13798/j.issn.1009-153X.2024.07.007]
点击复制

ADS032对急性缺血性脑卒中小鼠的神经保护作用()
分享到:

《中国临床神经外科杂志》[ISSN:1009-153X/CN:42-1603/TN]

卷:
29
期数:
2024年07期
页码:
415-421
栏目:
实验研究
出版日期:
2024-07-30

文章信息/Info

Title:
Neuroprotective effect of ADS032 on acute ischemic stroke in mice
文章编号:
1009-153X(2024)07-0415-07
作者:
黄文李明阳张勇刚熊晓星
430060武汉,武汉大学人民医院神经外科(黄文、李明阳、张勇刚、熊晓星)
Author(s):
HUANG Wen LI Ming-yang ZHANG Yong-gang XIONG Xiao-xing
Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
关键词:
急性缺血性脑卒中ADS032神经炎症神经保护作用小鼠
Keywords:
Acute ischemic stroke ADS032 Neuroinflammation Neuroprotective effect Mice
分类号:
R 743
DOI:
10.13798/j.issn.1009-153X.2024.07.007
文献标志码:
A
摘要:
目的 探讨ADS032对小鼠急性缺血性脑卒中后神经功能的作用及机制。方法 将100只雄性C57BL/6小鼠随机划分为5组:假手术组、模型组及低、中、高剂量ADS032组,每组20只。线栓法构建右侧大脑中动脉栓塞模型模拟缺血性脑卒中,脑缺血后立即腹腔注射ADS032(50、100、200 mg/kg)治疗3 d(1次/d),依据Longa评分评估小鼠神经功能,使用TTC染色评估脑梗死体积,免疫荧光染色法检测梗死侧小胶质细胞含量的变化,利用实时荧光定量PCR检测梗死侧脑组织抗炎因子白细胞介素(IL)-4、IL-10以及促炎因子IL-18、IL-1β的表达,利用免疫印迹法检测NOD样受体热蛋白结构域相关蛋白3(NLRP3)炎症小体、凋亡相关斑点样蛋白(ASC)以及IL-18、IL-1β的表达。结果 与假手术组相比,模型组小鼠脑梗死明显(P<0.05),神经功能缺损加重(P<0.05),梗死侧脑组织小胶质细胞数量明显增加(P<0.05),NLRP3、ASC、IL-18、IL-1β水平明显升高(P<0.05),IL-4、IL-10水平明显下降(P<0.05)。与模型组相比,ADS032明显减小脑梗死体积(P<0.05),明显改善神经功能缺损(P<0.05),明显减少梗死侧脑组织小胶质细胞数量(P<0.05),明显减轻神经炎症反应、增加抗炎因子水平(P<0.05),并且呈剂量依赖性。结论 ADS032对小鼠急性缺血性脑卒中具有显著的神经保护作用,其机制可能与抑制炎症反应有关。
Abstract:
Objective To explore the effect and mechanism of ADS032 on neurological function in mice after acute ischemic stroke. Methods One hundred male C57BL/6 mice were randomly divided into five groups: sham operation group, model group, and low-, medium-, and high-dose ADS032 groups, with 20 mice in each group. The middle cerebral artery occlusion model was established by suture method to simulate ischemic stroke. After ischemia, ADS032 (50, 100, 200 mg/kg) was intraperitoneally injected once a day for 3 days. The neurological function of mice was evaluated according to the Longa score, the cerebral infarction volume was evaluated by TTC staining, the content of microglia in the infarcted cerebral tissues was detected by immunofluorescence staining, the expressions of anti-inflammatory factors interleukin (IL)-4, IL-10 and pro-inflammatory factors IL-18, IL-1β in the infarcted cerebral tissues were detected by real-time fluorescent quantitative PCR, and the expressions of NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome, apoptosis-associated speck-like protein (ASC), and IL-18, IL-1β were detected by Western blotting. Results Compared with the sham operation group, the model group had significant cerebral infarction (P<0.05), aggravated neurological deficit (P<0.05), a significant increase in the number of microglia in the infarcted cerebral tissues (P<0.05), significantly increased levels of NLRP3, ASC, IL-18, and IL-1β (P<0.05), and significantly decreased levels of IL-4 and IL-10 (P<0.05). Compared with the model group, ADS032 significantly reduced the cerebral infarction volume (P<0.05), significantly improved the neurological deficit (P<0.05), significantly reduced the number of microglia in the infarcted cerebral tissues (P<0.05), significantly alleviated the neuroinflammatory response, and increased the levels of anti-inflammatory factors (P<0.05), in a dose-dependent manner. Conclusion ADS032 has a significant neuroprotective effect on acute ischemic stroke in mice, and its mechanism may be related to the inhibition of inflammatory response.

参考文献/References:

[1]CAMPBELL BCV, DE SILVA DA, MACLEOD MR, et al. Ischaemic stroke[J]. Nat Rev Dis Primers, 2019, 5(1): 70.
[2]RENEDO D, ACOSTA JN, LEASURE AC, et al. Burden of ischemic and hemorrhagic stroke across the US from 1990 to 2019[J]. JAMA Neurol, 2024, 81(4): 394-404.
[3]DELONG JH, OHASHI SN, O’CONNOR KC, et al. Inflammatory responses after ischemic stroke[J]. Semin Immunopathol, 2022, 44 (5): 625-648.
[4]CAI W, HU M, LI C, et al. FOXP3+ macrophage represses acute ischemic stroke-induced neural inflammation[J]. Autophagy, 2023, 19(4): 1144-1163.
[5]DHANESHA N, PATEL RB, DODDAPATTAR P, et al. PKM2 promotes neutrophil activation and cerebral thromboinflammation: therapeutic implications for ischemic stroke[J]. Blood, 2022, 139 (8): 1234-1245.
[6]DOCHERTY CA, FERNANDO AJ, ROSLI S, et al. A novel dual NLRP1 and NLRP3 inflammasome inhibitor for the treatment of inflammatory diseases[J]. Clin Transl Immunology, 2023, 12(6): e1455.
[7]XIONG X, GU L, WANG Y, et al. Glycyrrhizin protects against focal cerebral ischemia via inhibition of T cell activity and HMGB1-mediated mechanisms[J]. J Neuroinflammation, 2016, 13(1): 241.
[8]PAN R, XIE Y, FANG W, et al. USP20 mitigates ischemic stroke in mice by suppressing neuroinflammation and neuron death via regulating PTEN signal[J]. Int Immunopharmacol, 2022, 103: 107840.
[9]FRANKE M, BIEBER M, KRAFT P, et al. The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice[J]. Brain Behav Immun, 2021, 92: 223-233.
[10]QIN C, YANG S, CHU YH, et al. Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2022, 7(1): 215.
[11]WANG L, REN W, WU Q, et al. NLRP3 inflammasome activation: a therapeutic target for cerebral ischemia-reperfusion injury[J]. Front Mol Neurosci, 2022, 15: 847440.
[12]XU S, LU J, SHAO A, et al. Glial cells: role of the immune response in ischemic stroke[J]. Front Immunol, 2020, 11: 294.
[13]ZENG J, BAO T, YANG K, et al. The mechanism of microglia-mediated immune inflammation in ischemic stroke and the role of natural botanical components in regulating microglia: a review[J]. Front Immunol, 2022, 13: 1047550.
[14]DOU X, JI W, DAI M, et al. Spatial and temporal mapping of neuron-microglia interaction modes in acute ischemic stroke[J]. Biochem Pharmacol, 2023, 216: 115772.
[15]ZHU H, JIAN Z, ZHONG Y, et al. Janus kinase inhibition ameliorates ischemic stroke injury and neuroinflammation through reducing NLRP3 inflammasome activation via JAK2/STAT3 pathway inhibition[J]. Front Immunol, 2021, 12: 714943.
[16]XU P, HONG Y, XIE Y, et al. TREM-1 exacerbates neuroinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental subarachnoid hemorrhage[J]. Transl Stroke Res, 2021, 12 (4): 643-659.
[17]HU J, ZENG C, WEI J, et al. The combination of panax ginseng and angelica sinensis alleviates ischemia brain injury by suppressing NLRP3 inflammasome activation and microglial pyroptosis[J]. Phytomedicine, 2020, 76: 153251.
[18]SARAFANIUK N, KLYMENKO M. Production of interleukins 1β, 2, 4, 10 and C-reactive protein in ischemic stroke[J]. Wiad Lek, 2022, 75(3): 598-604.
[19]ZHU H, HU S, LI Y, et al. Interleukins and ischemic stroke[J]. Front Immunol, 2022, 13: 828447.
[20]LI J, XU P, HONG Y, et al. Lipocalin-2-mediated astrocyte pyroptosis promotes neuroinflammatory injury via NLRP3 inflammasome activation in cerebral ischemia/reperfusion injury[J]. J Neuroinflammation, 2023, 20(1): 148.
[21]HUANG Y, LI K, DAI Q, et al. SCH 644343 alleviates ischemic stroke-induced neuroinflammation by promoting microglial polarization via the IL-4/SREBP-1 signaling pathway[J]. Eur J Pharmacol, 2023, 958: 176033.
[22]ZHAO H, LIU Y, CHEN N, et al. PHLDA1 blockade alleviates cerebral ischemia/reperfusion injury by affecting microglial M1/M2 polarization and NLRP3 inflammasome activation[J]. Neuroscience, 2022, 487: 66-77.

相似文献/References:

[1]何 俊 夏 鹰 陈焕雄 颜 山.Solitaire AB支架机械取栓治疗急性颅内动脉闭塞[J].中国临床神经外科杂志,2015,(08):466.[doi:10.13798/j.issn.1009-153X.2015.08.007]
 HE Jun,XIA Ying,CHEN Huan-xiong,et al.Curative effects of mechanical embolectomy with Solitaire AB stents on acute cerebral infarction[J].,2015,(07):466.[doi:10.13798/j.issn.1009-153X.2015.08.007]
[2]喻 健 王海嵘 潘曙明 综述 葛勤敏 审校.急性缺血性脑卒中机械取栓术的研究进展[J].中国临床神经外科杂志,2015,(08):503.[doi:10.13798/j.issn.1009-153X.2015.08.023]
[3]闫忠军 徐东为 胡 焱 张玉凯 杨建龙.急性缺血性脑卒中的治疗体会[J].中国临床神经外科杂志,2017,(08):591.[doi:10.13798/j.issn.1009-153X.2017.08.025]
[4]黄昌恒 于耀宇 姚自同.急性缺血性脑卒中机械取栓术中应用替罗非班效果的Meta分析[J].中国临床神经外科杂志,2019,(09):527.[doi:10.13798/j.issn.1009-153X.2019.09.005]
 HUANG Chang-heng,YU Yao-yu,YAO Zi-tong.Meta-analysis of impact of tirofiban on clinical effect of mechanical thrombectomy on acute ischemic stroke[J].,2019,(07):527.[doi:10.13798/j.issn.1009-153X.2019.09.005]
[5]罗 宽 周赤忠 潘德锐 乔 木 胡 蝶 段玲俐.动脉溶栓联合机械取栓治疗急性缺血性脑卒中[J].中国临床神经外科杂志,2019,(09):560.[doi:10.13798/j.issn.1009-153X.2019.09.017]
[6]孙 兵 丁鸭锁 常 浩.Solitaire支架取栓术治疗急性缺血性脑卒中的疗效[J].中国临床神经外科杂志,2019,(12):764.[doi:10.13798/j.issn.1009-153X.2019.12.016]
[7]王 英 杜丽英.完善绿色通道及取栓流程对急性缺血性脑卒中病人神经功能的影响[J].中国临床神经外科杂志,2019,(12):769.[doi:10.13798/j.issn.1009-153X.2019.12.019]
[8]韩冰莎 李 娇 李 翔 栗艳茹 张 磊 赵敬河 冯 光.脑氧饱和度监测目标导向治疗在前循环急性缺血性脑卒中机械取栓术后管理的效果[J].中国临床神经外科杂志,2020,(02):73.[doi:10.13798/j.issn.1009-153X.2020.02.004]
 HAN Bing-sha,LI Jiao,LI Xiang,et al.Effects of targeted therapy under direction of monitoring cerebral oxygen saturation on patients with acute ischemic stroke of anterior circulation undergoing mechanical thrombectomy[J].,2020,(07):73.[doi:10.13798/j.issn.1009-153X.2020.02.004]
[9]吴小兵 杨旭森 洪 宇.球囊扩张在急性缺血性卒中合并原位狭窄中的处理体会[J].中国临床神经外科杂志,2021,26(07):544.[doi:10.13798/j.issn.1009-153X.2021.07.016]
[10]赵曰圆,马廉亭.急性脑梗塞(急性缺血性脑卒中)的治疗新方法——机械取栓(拉栓)[J].中国临床神经外科杂志,2022,27(05):431.[doi:10.13798/j.issn.1009-153X.2022.05.039]

备注/Memo

备注/Memo:
(2024-03-21收稿,2024-06-26修回)
基金项目:国家自然科学基金(82371346;82171336);湖北省科技创新重大专项目(2023BCB021);武汉大学自主科研项目(2042022kf1216)
通信作者:熊晓星,Email:xiaoxingxiong@whu.edu.cn
更新日期/Last Update: 2024-07-30