[1]朱占胜,陈谦学.胶质母细胞瘤免疫微环境中氨基酸代谢的研究进展[J].中国临床神经外科杂志,2024,29(05):295-298.[doi:10.13798/j.issn.1009-153X.2024.05.012]
 ZHU Zhan-sheng,CHEN Qian-xue.Progress of amino acid metabolism in the immune microenvironment of glioblastoma[J].,2024,29(05):295-298.[doi:10.13798/j.issn.1009-153X.2024.05.012]
点击复制

胶质母细胞瘤免疫微环境中氨基酸代谢的研究进展()
分享到:

《中国临床神经外科杂志》[ISSN:1009-153X/CN:42-1603/TN]

卷:
29
期数:
2024年05期
页码:
295-298
栏目:
综述
出版日期:
2024-05-30

文章信息/Info

Title:
Progress of amino acid metabolism in the immune microenvironment of glioblastoma
文章编号:
1009-153X(2024)05-0295-04
作者:
朱占胜陈谦学
430060武汉,武汉大学人民医院神经外科(朱占胜、陈谦学)
Author(s):
ZHU Zhan-sheng CHEN Qian-xue
Department of Neurosurgery, People's Hospital of Wuhan University, Wuhan 430060, China
关键词:
胶质母细胞瘤免疫微环境氨基酸代谢色氨酸精氨酸谷氨酸
Keywords:
Glioblastoma Tumor microenvironment Amino acids Metabolism reprogramming
分类号:
R 739.41
DOI:
10.13798/j.issn.1009-153X.2024.05.012
文献标志码:
A
摘要:
脑胶质母细胞瘤(GBM)是成人中枢神经系统中最常见的恶性程度最高的原发性脑肿瘤,即使采用以手术切除肿瘤联合术后同步放化疗等综合治疗,病人预后仍然很差。代谢异常是肿瘤细胞重要标志之一。氨基酸代谢重塑逐渐成为肿瘤研究的热点。氨基酸异常代谢可以为肿瘤细胞提供能量基础、为致癌基因表达提供原料以及为促癌基因活化提供配体,从而在肿瘤的发生、发展中发挥重要的作用。更好地理解氨基酸代谢重塑可为GBM的免疫治疗提供新的靶点。本文针对色氨酸、精氨酸和谷氨酸在GBM中的代谢及其对免疫微环境的影响展开综述,以期为下一步研究指明方向。
Abstract:
Glioblastoma multiforme (GBM) is the most common and highly malignant primary brain tumor in the adult central nervous system. Even with comprehensive treatments such as surgical tumor resection combined with postoperative concurrent chemoradiotherapy, the prognosis of GBM patients remains very poor. Metabolic abnormality is one of the significant hallmarks of tumor cells. The remodeling of amino acid metabolism has gradually become a research hotspot in oncology. Aberrant amino acid metabolism can provide an energy basis for tumor cells, offer raw materials for oncogene expression, and supply ligands for oncogene activation, thereby playing a crucial role in tumorigenesis and development. A better understanding of amino acid metabolic remodeling can offer new targets for the immunotherapy of GBM. This article reviews the metabolism of tryptophan, arginine, and glutamate in GBM and their influences on the immune microenvironment, with the hope of pointing out the direction for the next step of research.

参考文献/References:

[1]OSTROM T, CIOFFI G, WAITE K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018 [J]. Neuro-Oncol, 2021, 23(12): 1-105.
[2]LIN YJ, MASHOUF LA, LIM M, et al. CAR T cell therapy in primary brain tumors: current investigations and the future [J]. Front Immunol, 2022, 13: 817296.
[3]Mahmoud AB, AJINA R, AREF S, et al. Advances in immunotherapy for glioblastoma multiforme [J]. Front Immunol, 2022, 13: 944452.
[4]HANAHAN D. Hallmarks of cancer: new dimensions [J]. Cancer Discov, 2022, 12(1): 31-46.
[5]VETTORE L, WESTBROOK RL, TENNANT DA. New aspects of amino acid metabolism in cancer [J]. Br J Cancer, 2020, 122(2): 150-156.
[6]SIVANAND S, VANDER HEIDEN MG. Emerging roles for branched-chain amino acid metabolism in cancer [J]. Cancer Cell, 2020, 37(2): 147-156.
[7]PLATTEN M, NOLLEN EAA, ROHRIG UF, et al. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond [J]. Nat Rev Drug Discov, 2019, 18(5): 379-401.
[8]HAINING Z, KAWAI N, MIYAKE K, et al. Relation of LAT1/4F2hc expression with pathological grade, proliferation and angiogenesis in human gliomas [J]. BMC Clin Pathol, 2012, 12: 4.
[9]AHMED KA, CHINNAIYAN P. Applying metabolomics to understand the aggressive phenotype and identify novel therapeutic targets in glioblastoma [J]. Metabolites, 2014, 4(3): 740-750.
[10]PANITZ V, KONOAREVI S, SADI KA, et al. Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma [J]. Theranostics, 2021, 11(19): 9217-9233.
[11]PALANICHAMY K, THIRUMOORTHY K, KANJI S, et al. Methionine and kynurenine activate oncogenic kinases in glioblastoma, and methionine deprivation compromises proliferation [J]. Clin Cancer Res, 2016, 22(14): 3513-3523.
[12]HOSSEINALIZADEH H, MAHMOODPOUR M, SAMADANI AA, et al. The immunosuppressive role of indoleamine 2, 3-dioxygenase in glioblastoma: mechanism of action and immunotherapeutic strategies [J]. Med Oncol, 2022, 39(9): 130.
[13]ZHAI L, LADOMERSKY E, LAUING KL, et al. Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival [J]. Clin Cancer Res, 2017, 23(21): 6650-6660.
[14]SUN S, DU G, XUE J, et al. PCC0208009 enhances the anti-tumor effects of temozolomide through direct inhibition and transcriptional regulation of indoleamine 2,3-dioxygenase in glioma models [J]. Int J Immunopathol Pharmacol, 2018, 32: 2058738418787991.
[15]OCHS K, OTT M, RAUSCHENBACH KJ, et al. Tryptophan-2,3-dioxygenase is regulated by prostaglandin E2 in malignant glioma via a positive signaling loop involving prostaglandin E receptor-4 [J]. J Neurochem, 2016, 136(6): 1142-1154.
[16]TAKENAKA MC, GABRIELY G, ROTHHAMMER V, et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39 [J]. Nat Neurosci, 2019, 22(5): 729-740.
[17]LIU Y, LIANG X, DONG W, et al. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation [J]. Cancer Cell, 2018, 33(3): 480-494.
[18]SADIK A, SOMARRIBAS PATTERSON LF, AZTORK S, et al. IL4I1 is a metabolic immune checkpoint that activates the ahr and promotes tumor progression [J]. Cell, 2020, 182(5): 1252-1270.
[19]CHEN CL, HSU SC, ANN DK, et al. Arginine signaling and cancer metabolism [J]. Cancers (Basel), 2021, 13(14): 3541.
[20]HOU X, CHEN S, ZHANG P, et al. Targeted arginine metabolism therapy: a dilemma in glioma treatment [J]. Front Oncol, 2022, 12: 938847.
[21]PANOSYAN EH, LIN HJ, KOSTER J, et al. In search of druggable targets for GBM amino acid metabolism [J]. BMC Cancer, 2017, 17 (1): 162.
[22]MART IL, NDEZ AA, REITH W. Arginine-dependent immune responses [J]. Cell Mol Life Sci, 2021, 78(13): 5303-5324.
[23]CANALE FP, BASSO C, ANTONINI G, et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy [J]. Nature, 2021, 598(7882): 662-666.
[24]HAJJI N, GARCIA-REVILLA J, SOTO MS, et al. Arginine deprivation alters microglial polarity and synergizes with radiation to eradicate non-arginine-auxotrophic glioblastoma tumors [J]. J Clin Invest, 2022, 132(6): e142137.
[25]FENG W, ZUO M, LI W, et al. A novel score system based on arginine metabolism-related genes to predict prognosis, characterize immune microenvironment, and forecast response to immunotheraoy in IDH-wildtype glioblastoma [J]. Front Pharmacol, 2023, 14: 1145828.
[26]OBARA-MICHLEWSKA M, SZELIGA M. Targeting glutamine addiction in gliomas [J]. Cancers (Basel), 2020, 12(2): 310.
[27]SIDORYK M, MATYJA E, DYBEL A, et al. Increased expression of a glutamine transporter SNAT3 is a marker of malignant gliomas [J]. Neuroreport, 2004, 15: 575-578.
[28]CANIGLIA JL, JALASUTRAM A, ASUTHKAR S, et al. Beyond glucose: alternative sources of energy in glioblastoma [J]. Theranostics, 2021, 11(5): 2048-2057.
[29]LIU PS, WANG H, LI X, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming [J]. Nat Immunol, 2017, 18(9): 985-994.
[30]PALMIERI EM, MENGA A, MARTN-PREZ R, et al. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis [J]. Cell Rep, 2017, 20(7): 1654-1666.
[31]LOFTUS RM, ASSMANN N, KEDIA-MEHTA N, et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice [J]. Nat Commun, 2018, 9: 2341.
[32]LIN SC, HARDIE DG. AMPK: sensing glucose as well as cellular energy status [J]. Cell Metab, 2018, 27(2): 299-313.
[33]FAN H, ZHANG S, YUAN Y, et al. Glutamine metabolism-related genes predict prognosis and reshape tumor microenvironment immune characteristics in diffuse gliomas [J]. Front Neurol, 2023, 14: 1104738.

相似文献/References:

[1]谢宝树 张 林 王 宇 贾 锋 殷玉华.复发性多发胶质母细胞瘤的预后分析[J].中国临床神经外科杂志,2016,(06):333.[doi:10.13798/j.issn.1009-153X.2016.06.005]
 XIE Bao-shu,ZHANG Lin,WANG Yu,et al.Analysis of prognoses in patients with recurrent multiple glioblastomas[J].,2016,(05):333.[doi:10.13798/j.issn.1009-153X.2016.06.005]
[2]宋贵东 综述 高之宪 审校.贝伐单抗治疗复发胶质母细胞瘤的研究进展[J].中国临床神经外科杂志,2015,(10):638.[doi:10.13798/j.issn.1009-153X.2015.10.022]
[3]李继强 杨吉安 邵灵敏 吴庭枫 刘宝辉 陈谦学.稳定低表达BAG3的胶质母细胞瘤U87细胞株的构建及鉴定[J].中国临床神经外科杂志,2015,(06):353.[doi:10.13798/j.issn.1009-153X.2015.06.011]
 LI Ji-qiang,YANG Ji-an,SHAO Ling-min,et al.Construction and identification of U87 glioblastoma cell strain with a stable low expression of BAG3[J].,2015,(05):353.[doi:10.13798/j.issn.1009-153X.2015.06.011]
[4]桂志勇 冯 军 黄俊红 白敬洋.靶向沉默c-fos基因表达对胶质瘤U87MG细胞增殖与侵袭的影响[J].中国临床神经外科杂志,2017,(12):834.[doi:10.13798/j.issn.1009-153X.2017.12.011]
 GUI Zhi-yong,FENG Jun,HUANG Jun-hong,et al.Effects of c-fos targeted silence on proliferation and invasiveness of human glioma cell U87[J].,2017,(05):834.[doi:10.13798/j.issn.1009-153X.2017.12.011]
[5]王娇燕 孟凡华 刘魏然 魏春晓 林丽萍.SWI在胶质母细胞瘤与单发脑转移瘤鉴别中的价值[J].中国临床神经外科杂志,2018,(01):13.[doi:10.13798/j.issn.1009-153X.2018.01.005]
 WANG Jiao-yan,MENG Fan-hua,LIU Wei-ran,et al.Value of susceptibility-weighted imaging in differentiative diagnosis of glioblastomas and solitary brain metastases[J].,2018,(05):13.[doi:10.13798/j.issn.1009-153X.2018.01.005]
[6]张治元 王汉东 樊友武 贾 玥 吴晋蓉.胶质肉瘤15例分析及文献复习[J].中国临床神经外科杂志,2018,(02):69.
 ZHANG Zhi-yuan,WANG Han-dong,FAN You-wu,et al.Diagnosis and treatment of gliosarcoma: a report of 15 cases and literature review[J].,2018,(05):69.
[7]赵炜熠 初 明.胶质瘤免疫抑制与治疗的研究进展[J].中国临床神经外科杂志,2018,(03):212.[doi:10.13798/j.issn.1009-153X.2018.03.027]
[8]郑锐哲 姜秀峰 陈二涛 孙兆良 冯东福.胶质母细胞瘤卒中术后继发硬膜下水瘤1例[J].中国临床神经外科杂志,2019,(02):128.[doi:10.13798/j.issn.1009-153X.2019.02.022]
[9]胡 玥,薛小燕,李子超,等.阿苯达唑抑制胶质瘤裸鼠模型肿瘤生长[J].中国临床神经外科杂志,2019,(06):348.[doi:10.13798/j.issn.1009-153X.2019.06.010]
 HU Yue,XUE Xiao-yan,LI Zi-chao,et al.Albendazole inhibits tumor growth in nude mice model of glioma[J].,2019,(05):348.[doi:10.13798/j.issn.1009-153X.2019.06.010]
[10]殷安安 陆 南 贺亚龙 章 翔 刘玉河.TRIM38基因非CpG岛DNA甲基化与胶质母细胞瘤临床预后的关系[J].中国临床神经外科杂志,2020,(02):76.[doi:10.13798/j.issn.1009-153X.2020.02.005]
 YIN An-an,LU Nan,HE Ya-long,et al.Impacts of TRIM38 non-CpG island DNA methylation alterations on clinical prognosis in patients with glioblastomas[J].,2020,(05):76.[doi:10.13798/j.issn.1009-153X.2020.02.005]

备注/Memo

备注/Memo:
(2023-03-06收稿,2024-01-11修回)
通信作者:陈谦学,Email:chenqx666@whu.edu.cn
更新日期/Last Update: 2024-05-30