参考文献/References:
[1]OSTROM T, CIOFFI G, WAITE K, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2014-2018 [J]. Neuro-Oncol, 2021, 23(12): 1-105.
[2]LIN YJ, MASHOUF LA, LIM M, et al. CAR T cell therapy in primary brain tumors: current investigations and the future [J]. Front Immunol, 2022, 13: 817296.
[3]Mahmoud AB, AJINA R, AREF S, et al. Advances in immunotherapy for glioblastoma multiforme [J]. Front Immunol, 2022, 13: 944452.
[4]HANAHAN D. Hallmarks of cancer: new dimensions [J]. Cancer Discov, 2022, 12(1): 31-46.
[5]VETTORE L, WESTBROOK RL, TENNANT DA. New aspects of amino acid metabolism in cancer [J]. Br J Cancer, 2020, 122(2): 150-156.
[6]SIVANAND S, VANDER HEIDEN MG. Emerging roles for branched-chain amino acid metabolism in cancer [J]. Cancer Cell, 2020, 37(2): 147-156.
[7]PLATTEN M, NOLLEN EAA, ROHRIG UF, et al. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond [J]. Nat Rev Drug Discov, 2019, 18(5): 379-401.
[8]HAINING Z, KAWAI N, MIYAKE K, et al. Relation of LAT1/4F2hc expression with pathological grade, proliferation and angiogenesis in human gliomas [J]. BMC Clin Pathol, 2012, 12: 4.
[9]AHMED KA, CHINNAIYAN P. Applying metabolomics to understand the aggressive phenotype and identify novel therapeutic targets in glioblastoma [J]. Metabolites, 2014, 4(3): 740-750.
[10]PANITZ V, KONOAREVI S, SADI KA, et al. Tryptophan metabolism is inversely regulated in the tumor and blood of patients with glioblastoma [J]. Theranostics, 2021, 11(19): 9217-9233.
[11]PALANICHAMY K, THIRUMOORTHY K, KANJI S, et al. Methionine and kynurenine activate oncogenic kinases in glioblastoma, and methionine deprivation compromises proliferation [J]. Clin Cancer Res, 2016, 22(14): 3513-3523.
[12]HOSSEINALIZADEH H, MAHMOODPOUR M, SAMADANI AA, et al. The immunosuppressive role of indoleamine 2, 3-dioxygenase in glioblastoma: mechanism of action and immunotherapeutic strategies [J]. Med Oncol, 2022, 39(9): 130.
[13]ZHAI L, LADOMERSKY E, LAUING KL, et al. Infiltrating T cells increase IDO1 expression in glioblastoma and contribute to decreased patient survival [J]. Clin Cancer Res, 2017, 23(21): 6650-6660.
[14]SUN S, DU G, XUE J, et al. PCC0208009 enhances the anti-tumor effects of temozolomide through direct inhibition and transcriptional regulation of indoleamine 2,3-dioxygenase in glioma models [J]. Int J Immunopathol Pharmacol, 2018, 32: 2058738418787991.
[15]OCHS K, OTT M, RAUSCHENBACH KJ, et al. Tryptophan-2,3-dioxygenase is regulated by prostaglandin E2 in malignant glioma via a positive signaling loop involving prostaglandin E receptor-4 [J]. J Neurochem, 2016, 136(6): 1142-1154.
[16]TAKENAKA MC, GABRIELY G, ROTHHAMMER V, et al. Control of tumor-associated macrophages and T cells in glioblastoma via AHR and CD39 [J]. Nat Neurosci, 2019, 22(5): 729-740.
[17]LIU Y, LIANG X, DONG W, et al. Tumor-repopulating cells induce PD-1 expression in CD8+ T cells by transferring kynurenine and AhR activation [J]. Cancer Cell, 2018, 33(3): 480-494.
[18]SADIK A, SOMARRIBAS PATTERSON LF, AZTORK S, et al. IL4I1 is a metabolic immune checkpoint that activates the ahr and promotes tumor progression [J]. Cell, 2020, 182(5): 1252-1270.
[19]CHEN CL, HSU SC, ANN DK, et al. Arginine signaling and cancer metabolism [J]. Cancers (Basel), 2021, 13(14): 3541.
[20]HOU X, CHEN S, ZHANG P, et al. Targeted arginine metabolism therapy: a dilemma in glioma treatment [J]. Front Oncol, 2022, 12: 938847.
[21]PANOSYAN EH, LIN HJ, KOSTER J, et al. In search of druggable targets for GBM amino acid metabolism [J]. BMC Cancer, 2017, 17 (1): 162.
[22]MART IL, NDEZ AA, REITH W. Arginine-dependent immune responses [J]. Cell Mol Life Sci, 2021, 78(13): 5303-5324.
[23]CANALE FP, BASSO C, ANTONINI G, et al. Metabolic modulation of tumours with engineered bacteria for immunotherapy [J]. Nature, 2021, 598(7882): 662-666.
[24]HAJJI N, GARCIA-REVILLA J, SOTO MS, et al. Arginine deprivation alters microglial polarity and synergizes with radiation to eradicate non-arginine-auxotrophic glioblastoma tumors [J]. J Clin Invest, 2022, 132(6): e142137.
[25]FENG W, ZUO M, LI W, et al. A novel score system based on arginine metabolism-related genes to predict prognosis, characterize immune microenvironment, and forecast response to immunotheraoy in IDH-wildtype glioblastoma [J]. Front Pharmacol, 2023, 14: 1145828.
[26]OBARA-MICHLEWSKA M, SZELIGA M. Targeting glutamine addiction in gliomas [J]. Cancers (Basel), 2020, 12(2): 310.
[27]SIDORYK M, MATYJA E, DYBEL A, et al. Increased expression of a glutamine transporter SNAT3 is a marker of malignant gliomas [J]. Neuroreport, 2004, 15: 575-578.
[28]CANIGLIA JL, JALASUTRAM A, ASUTHKAR S, et al. Beyond glucose: alternative sources of energy in glioblastoma [J]. Theranostics, 2021, 11(5): 2048-2057.
[29]LIU PS, WANG H, LI X, et al. α-ketoglutarate orchestrates macrophage activation through metabolic and epigenetic reprogramming [J]. Nat Immunol, 2017, 18(9): 985-994.
[30]PALMIERI EM, MENGA A, MARTN-PREZ R, et al. Pharmacologic or genetic targeting of glutamine synthetase skews macrophages toward an M1-like phenotype and inhibits tumor metastasis [J]. Cell Rep, 2017, 20(7): 1654-1666.
[31]LOFTUS RM, ASSMANN N, KEDIA-MEHTA N, et al. Amino acid-dependent cMyc expression is essential for NK cell metabolic and functional responses in mice [J]. Nat Commun, 2018, 9: 2341.
[32]LIN SC, HARDIE DG. AMPK: sensing glucose as well as cellular energy status [J]. Cell Metab, 2018, 27(2): 299-313.
[33]FAN H, ZHANG S, YUAN Y, et al. Glutamine metabolism-related genes predict prognosis and reshape tumor microenvironment immune characteristics in diffuse gliomas [J]. Front Neurol, 2023, 14: 1104738.
相似文献/References:
[1]谢宝树 张 林 王 宇 贾 锋 殷玉华.复发性多发胶质母细胞瘤的预后分析[J].中国临床神经外科杂志,2016,(06):333.[doi:10.13798/j.issn.1009-153X.2016.06.005]
XIE Bao-shu,ZHANG Lin,WANG Yu,et al.Analysis of prognoses in patients with recurrent multiple glioblastomas[J].,2016,(05):333.[doi:10.13798/j.issn.1009-153X.2016.06.005]
[2]宋贵东 综述 高之宪 审校.贝伐单抗治疗复发胶质母细胞瘤的研究进展[J].中国临床神经外科杂志,2015,(10):638.[doi:10.13798/j.issn.1009-153X.2015.10.022]
[3]李继强 杨吉安 邵灵敏 吴庭枫 刘宝辉 陈谦学.稳定低表达BAG3的胶质母细胞瘤U87细胞株的构建及鉴定[J].中国临床神经外科杂志,2015,(06):353.[doi:10.13798/j.issn.1009-153X.2015.06.011]
LI Ji-qiang,YANG Ji-an,SHAO Ling-min,et al.Construction and identification of U87 glioblastoma cell strain with a stable low expression of BAG3[J].,2015,(05):353.[doi:10.13798/j.issn.1009-153X.2015.06.011]
[4]桂志勇 冯 军 黄俊红 白敬洋.靶向沉默c-fos基因表达对胶质瘤U87MG细胞增殖与侵袭的影响[J].中国临床神经外科杂志,2017,(12):834.[doi:10.13798/j.issn.1009-153X.2017.12.011]
GUI Zhi-yong,FENG Jun,HUANG Jun-hong,et al.Effects of c-fos targeted silence on proliferation and invasiveness of human glioma cell U87[J].,2017,(05):834.[doi:10.13798/j.issn.1009-153X.2017.12.011]
[5]王娇燕 孟凡华 刘魏然 魏春晓 林丽萍.SWI在胶质母细胞瘤与单发脑转移瘤鉴别中的价值[J].中国临床神经外科杂志,2018,(01):13.[doi:10.13798/j.issn.1009-153X.2018.01.005]
WANG Jiao-yan,MENG Fan-hua,LIU Wei-ran,et al.Value of susceptibility-weighted imaging in differentiative diagnosis of glioblastomas and solitary brain metastases[J].,2018,(05):13.[doi:10.13798/j.issn.1009-153X.2018.01.005]
[6]张治元 王汉东 樊友武 贾 玥 吴晋蓉.胶质肉瘤15例分析及文献复习[J].中国临床神经外科杂志,2018,(02):69.
ZHANG Zhi-yuan,WANG Han-dong,FAN You-wu,et al.Diagnosis and treatment of gliosarcoma: a report of 15 cases and literature review[J].,2018,(05):69.
[7]赵炜熠 初 明.胶质瘤免疫抑制与治疗的研究进展[J].中国临床神经外科杂志,2018,(03):212.[doi:10.13798/j.issn.1009-153X.2018.03.027]
[8]郑锐哲 姜秀峰 陈二涛 孙兆良 冯东福.胶质母细胞瘤卒中术后继发硬膜下水瘤1例[J].中国临床神经外科杂志,2019,(02):128.[doi:10.13798/j.issn.1009-153X.2019.02.022]
[9]胡 玥,薛小燕,李子超,等.阿苯达唑抑制胶质瘤裸鼠模型肿瘤生长[J].中国临床神经外科杂志,2019,(06):348.[doi:10.13798/j.issn.1009-153X.2019.06.010]
HU Yue,XUE Xiao-yan,LI Zi-chao,et al.Albendazole inhibits tumor growth in nude mice model of glioma[J].,2019,(05):348.[doi:10.13798/j.issn.1009-153X.2019.06.010]
[10]殷安安 陆 南 贺亚龙 章 翔 刘玉河.TRIM38基因非CpG岛DNA甲基化与胶质母细胞瘤临床预后的关系[J].中国临床神经外科杂志,2020,(02):76.[doi:10.13798/j.issn.1009-153X.2020.02.005]
YIN An-an,LU Nan,HE Ya-long,et al.Impacts of TRIM38 non-CpG island DNA methylation alterations on clinical prognosis in patients with glioblastomas[J].,2020,(05):76.[doi:10.13798/j.issn.1009-153X.2020.02.005]