[1]韩硕,王君玉,卢成寅,等.间充质干细胞来源外泌体在脑缺血再灌注损伤中神经保护作用的研究进展[J].中国临床神经外科杂志,2024,29(03):177-180.[doi:10.13798/j.issn.1009-153X.2024.03.012]
 HAN Shuo,WANG Jun-yu,LU Cheng-yin,et al.Research progress of neuroprotective effect of exosomes derived from mesenchymal stem cells on cerebral ischemia-reperfusion injury[J].,2024,29(03):177-180.[doi:10.13798/j.issn.1009-153X.2024.03.012]
点击复制

间充质干细胞来源外泌体在脑缺血再灌注损伤中神经保护作用的研究进展()
分享到:

《中国临床神经外科杂志》[ISSN:1009-153X/CN:42-1603/TN]

卷:
29
期数:
2024年03期
页码:
177-180
栏目:
综述
出版日期:
2024-03-31

文章信息/Info

Title:
Research progress of neuroprotective effect of exosomes derived from mesenchymal stem cells on cerebral ischemia-reperfusion injury
文章编号:
1009-153X(2024)03-0177-04
作者:
韩硕王君玉卢成寅侯立军
200003上海,上海长征医院神经外科(韩硕、王君玉、卢成寅、侯立军)
Author(s):
HAN Shuo WANG Jun-yu LU Cheng-yin HOU Li-jun
Department of Neurosurgery, Shanghai Changzheng Hoapital, Shanghai 200003, China
关键词:
缺血性脑卒中缺血再灌注损伤间充质干细胞外泌体
Keywords:
Ischemic stroke Ischemia-reperfusion injury Mesenchymal stem cells Exosomes
分类号:
R 743
DOI:
10.13798/j.issn.1009-153X.2024.03.012
文献标志码:
A
摘要:
脑卒中是导致我国成年人残疾、死亡的首位原因,其中80%以上的脑卒中为缺血性脑卒中。缺血再灌注损伤是导致缺血性脑卒中病人残疾、死亡的常见原因。目前,针对缺血再灌注损伤的临床药物主要包括自由基清除剂、钙离子拮抗剂和兴奋性氨基酸拮抗剂等,疗效不理想。近年来,越来越多的研究者开始尝试应用干细胞治疗,但动物实验发现移植的干细胞在脑内存活率较低,很少有干细胞能分化为神经元。令人意外的是,研究发现干细胞可以通过旁分泌外泌体发挥神经保护作用。但天然外泌体靶向能力差,目前已经研发的工程性外泌体针对神经细胞具有主动靶向能力。本文对间充质干细胞来源外泌体在脑缺血再灌注损伤中的神经作用研究进展作一综述。
Abstract:
Stroke is the leading cause of disability and death among adults in China, with more than 80% of strokes being ischemic strokes. Cerebral ischemia-reperfusion injury is a common cause of disability and death in patients with ischemic strokes. Currently, the clinical drugs targeting cerebral ischemia-reperfusion injury mainly include free radical scavengers, calcium ion antagonists, and excitatory amino acid antagonists, with unsatisfactory effects. In recent years, more and more researchers have begun to try using stem cells for treatment of cerebral ischemia-reperfusion injury, but animal experiments have found that the survival rate of transplanted stem cells in the brain is low, and very few stem cells can differentiate into neurons. Surprisingly, studies have found that stem cells can exert neuroprotective effect through paracrine exosomes. However, natural exosomes have poor targeting ability, and engineered exosomes with active targeting ability to neural cells have been developed. This review summarizes the progress in the neuroprotective effect of mesenchymal stem cell-derived exosomes on cerebral ischemia-reperfusion injury.

参考文献/References:

[1]FESKE SK. Ischemic stroke [J]. Am J Med, 2021, 134(12): 1457-1464.
[2]YOON EJ, CHOI Y, KIM TM, et al. The Neuroprotective effects of exosomes derived from TSG101-overexpressing human neural stem cells in a stroke model [J]. Int J Mol Sci, 2022, 23(17): 9532.
[3]HUANG R, CHENG T, LAI X. Mechanism of ischemic brain injury repair by endothelial progenitor cell-derived exosomes [J]. Mol Med Rep, 2022, 26(2): 157-164.
[4]TAO H, LI L, DONG L, et al. Growth differentiation factor 7 pretreatment enhances the therapeutic capacity of bone marrowderived mesenchymal stromal cells against cerebral ischemiareperfusion injury [J]. Chem Biol Interact, 2023, 386(2): 110779-110785.
[5]XIA Y, HU G, CHEN Y, et al. Embryonic stem cell derived small extracellular vesicles modulate regulatory T cells to protect against ischemic stroke [J]. ACS Nano, 2021, 15(4): 7370-7385.
[6]YANG T, JIANG N, HAN H, et al. Bibliometric analysis of stem cells in ischemic stroke (2001-2022): trends, hotspots and prospects [J]. Int J Med Sci, 2024, 21(1): 151-168.
[7]MARKOWSKA A, KOZIOROWSKI D, SZLUFIK S. Microglia and stem cells for ischemic stroke treatment-mechanisms, current status, and therapeutic challenges [J]. Front Biosci (Landmark Ed), 2023, 28(10): 269-274.
[8]LIU X, ZHANG M, LIU H, et al. Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes [J]. Exp Neurol, 2021, 341: 113700-113708.
[9]HUANG W, FAN Y, JIANG C, et al. Marrow mesenchymal stem cell-derived exosomes upregulate astrocytic glutamate transporter-1 expression via mir-124/mtor pathway against oxygen-glucose deprivation/reperfusion injury [J]. J Integr Neurosci, 2023, 22(6): 144-148.
[10]WASEEM A, SAUDAMIN I, HAQUE R, et al. Mesenchymal stem cell-derived exosomes: shaping the next era of stroke treatment [J]. Neuroprotection, 2023, 1(2): 99-116.
[11]WU Q, WU JH, YE ZY, et al. Exosomes from hypoxia-treated mesenchymal stem cells: promoting neuroprotection in ischemic stroke through miR-214-3p/PTEN mechanism [J]. Mol Neurobiol, 2024, 1(2): 780-792.
[12]ZHANG G, ZHU Z, WANG H, et al. Exosomes derived from human neural stem cells stimulated by interferon gamma improve therapeutic ability in ischemic stroke model [J]. J Adv Res, 2020, 24: 435-445.
[13]KALLADKA D, SINDEN J, POLLOCK K, et al. Human neural stem cells in patients with chronic ischaemic stroke (PISCES): a phase 1, first-in-man study [J]. Lancet, 2016, 388(10046): 787-796.
[14]XIN H, LI Y, CUI Y, et al. Systemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats [J]. J Cereb Blood Flow Metab, 2013, 33(11): 1711-1715.
[15]YANG J, GAO F, ZHANG Y, et al. Buyang huanwu decoction (BYH WD) enhances angiogenic effect of mesenchymal stem cell by upregulating VEGF expression after focal cerebral ischemia [J]. J Mol Neurosci, 2015, 56(4): 898-906.
[16]ZHOU X, DENG X, LIU M, et al. Intranasal delivery of BDNFloaded small extracellular vesicles for cerebral ischemia therapy [J]. J Control Release, 2023, 357(5): 1-19.
[17]WEI R, ZHANG L, HU W, et al. Zeb2/Axin2-enriched BMSCderived exosomes promote post-stroke functional recovery by enhancing neurogenesis and neural plasticity [J]. J Mol Neurosci, 2022, 72(1): 69-81.
[18]YANG L, HAN B, ZHANG Z, et al. Extracellular vesicle-mediated delivery of circular RNA SCMH1 promotes functional recovery in rodent and nonhuman primate ischemic stroke models [J]. Circulation, 2020, 142(6): 556-574.
[19]TIAN T, ZHANG HX, HE CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy [J]. Biomaterials, 2018, 150(8): 137-149.
[20]JIANG M, WANG H, JIN M, et al. Exosomes from MiR-30d-5p-ADSCs reverse acute ischemic stroke-induced, autophagy-mediated brain injury by promoting M2 microglial/macrophage polarization [J]. Cell Physiol Biochem, 2018, 47(2): 864-878.
[21]XIN H, KATAKOWSKI M, WANG F, et al. MicroRNA cluster miR-17-92 Cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats [J]. Stroke, 2017, 48(3): 747-753.
[22]NALAMOLU KR, VENKATESH I, MOHANDASS A, et al. Exosomes secreted by the cocultures of normal and oxygen-glucosedeprived stem cells improve post-stroke outcome [J]. Neuromolecular Med, 2019, 21(4): 529-539.
[23]AHMED W, KUNIYAN MS, JAWED AM, et al. Engineered extracellular vesicles for drug delivery in therapy of stroke [J]. Pharmaceutics. 2023, 15(9): 2173-2179.
[24]KHAN H, PAN JJ, LI Y, et al. Native and bioengineered exosomes for ischemic stroke therapy [J]. Front Cell Dev Biol, 2021, 9(5): 619565-619570.
[25]ALEHOSSEIN P, TAHERI M, TAYEFEH GHAHREMANI P, et al. Transplantation of exercise-induced extracellular vesicles as a promising therapeutic approach in ischemic stroke [J]. Transl Stroke Res, 2023, 14(2): 211-237.
[26]LI P, YIN R, CHEN Y, et al. Engineered extracellular vesicles for ischemic stroke: a systematic review and meta-analysis of preclinical studies [J]. J Nanobiotechnol, 2023, 21(1): 396-343.

相似文献/References:

[1]宋 平 陈晓斌 杜 浩 蔡 强 罗 明 阮 航 吴京雷 段发亮.内膜斑块剥脱术治疗颈动脉狭窄的临床分析[J].中国临床神经外科杂志,2016,(09):527.[doi:10.13798/j.issn.1009-153X.2016.09.006]
 SONG Ping,CHEN Xiao-bin,DU Hao,et al.Clinical analysis of carotid endarterectomy for ischemic stroke[J].,2016,(03):527.[doi:10.13798/j.issn.1009-153X.2016.09.006]
[2]黄 坦 综述 黄书岚 陈谦学 审校.硫化氢保护脑缺血再灌注损伤的研究进展[J].中国临床神经外科杂志,2016,(10):652.[doi:10.13798/j.issn.1009-153X.2016.10.032]
[3]汪晓玲 倪志福 王云甫.依达拉奉联合氯吡格雷治疗老年缺血性脑卒中的效果与安全性分析[J].中国临床神经外科杂志,2017,(04):222.[doi:10.13798/j.issn.1009-153X.2017.04.005]
 WANG Xiao-ling,NI Zhi-fu,WANG Yun-fu..Curative effect of edaravone combined with clopidogrel on ischemic stroke and its safety in the elderly patients[J].,2017,(03):222.[doi:10.13798/j.issn.1009-153X.2017.04.005]
[4]段发亮,黄从刚,倪厚杰,等.阿司匹林联合氯吡格雷治疗缺血性脑卒中的疗效及对血小板聚集率的影响[J].中国临床神经外科杂志,2017,(07):470.[doi:10.13798/j.issn.1009-153X.2017.07.008]
 DUAN Fa-liang,HUANG Cong-gang,NI Hou-jie,et al.Curative effect of aspirin combined with plavix on ischemic stroke and its impact on platelet aggregation rate[J].,2017,(03):470.[doi:10.13798/j.issn.1009-153X.2017.07.008]
[5]王谋龙 李爱红 曲良锁.血清ANP水平及ANP基因多态性与缺血性脑卒中相关性的Meta分析[J].中国临床神经外科杂志,2018,(03):161.[doi:10.13798/j.issn.1009-153X.2018.03.007]
 WANG Mou-long,LI Ai-hong,QU Liang-suo.Meta-analysis of relativity of ANP serum levels and genetic polymorphisms with ischemic stroke risk[J].,2018,(03):161.[doi:10.13798/j.issn.1009-153X.2018.03.007]
[6]徐东为 赵振伟 李 江 闫忠军 屈 延 高国栋.急性前循环脑动脉闭塞支架成形术的疗效[J].中国临床神经外科杂志,2018,(05):328.[doi:10.13798/j.issn.1009-153X.2018.05.008]
 XU Dong-wei,ZHAO Zhen-wei,LI Jiang,et al.Effect of stenting on acute cerebral artery occlusion in anterior circulation[J].,2018,(03):328.[doi:10.13798/j.issn.1009-153X.2018.05.008]
[7]徐 阳 刘宝辉 袁凡恩 刘骏辉 许鹏飞 陈谦学.小胶质细胞在缺血性脑卒中中作用机制的研究进展[J].中国临床神经外科杂志,2018,(07):503.[doi:10.13798/j.issn.1009-153X.2018.07.020]
[8]秦海林 秦 汉 安学锋 別毕洲.颈动脉内膜斑块剥脱术治疗颈内动脉重度狭窄[J].中国临床神经外科杂志,2018,(12):775.[doi:10.13798/j.issn.1009-153X.2018.12.003]
 QIN Hai-lin,QIN Han,AN Xue-feng,et al.Effect of carotid endarterectomy on patients with severe stenosis of internal carotid artery[J].,2018,(03):775.[doi:10.13798/j.issn.1009-153X.2018.12.003]
[9]杨晓波.基于放松训练的情志护理对缺血性脑卒中病人锻炼依从性的影响[J].中国临床神经外科杂志,2019,(04):242.[doi:10.13798/j.issn.1009-153X.2019.04.019]
[10]陈 玲 赵振伟 张登文 方 伟 樊 霞 翟君丽 郎红娟.目标化康复指导路径表单在脑卒中病人早期康复中的应用[J].中国临床神经外科杂志,2019,(10):631.[doi:10.13798/j.issn.1009-153X.2019.10.018]

备注/Memo

备注/Memo:
(2022-10-18收稿,2024-03-03修回)
基金项目:国家自然科学基金(81671206),上海市科委国际科技合作项目(09410705100,14430721300),军队"十二五"重点课题(BWS12J025)
通信作者:侯立军,Email:lijunhousmmu@yahoo.com
更新日期/Last Update: 2024-03-31