参考文献/References:
[1] FIEST KM, SAURO KM, WIEBE S, et al. Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies [J]. Neurology, 2017, 88(3): 296-303.
[2] CHEN Z, BRODIE MJ, LIEW D, et al. Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study [J]. JAMA Neurol, 2018, 75(3): 279-286.
[3] BINDER DK, STEINHAUSER C. Astrocytes and epilepsy [J]. Neurochem Res, 2021, 46(10): 2687-2695.
[4] GIAUME C, NAUS CC, SáEZ JC, et al. Glial connexins and pannexins in the healthy and diseased brain [J]. Physiol Rev, 2021, 101 (1): 93-145.
[5] NARDIN C, MAMMANO F. Measurement of Ca(2+) uptake through connexin hemichannels [J]. Methods Mol Biol, 2024, 2801: 97-109.
[6] DE BOCKM, KERREBROUCK M, WANG N, et al. Neurological manifestations of oculodentodigital dysplasia: a Cx43 channelopathy of the central nervous system [J]. Front Pharmacol, 2013, 4: 55296.
[7] DELVAEYE T, VANDENABEELE P, BULTYNCK G, et al. Therapeutic targeting of connexin channels: new views and challenges [J]. Trends Mol Med, 2018, 24(12): 1036-1053.
[8] LEE HJ, JEONG H, HYUN J, et al. Cryo-EM structure of human Cx31.3/GJC3 connexin hemichannel [J]. Sci Adv, 2020, 6(35): eaba4996.
[9] NAULIN PA, LOZANO B, FUENTES C, et al. Polydisperse molecular architecture of connexin 26/30 heteromeric hemichannels revealed by atomic force microscopy imaging [J]. J Biol Chem, 2020, 295 (49): 16499-16509.
[10] SARROUILHE D, DEJEAN C, MESNIL M. Connexin43- and pannexin-based channels in neuroinflammation and cerebral neuropathies [J]. Front Mol Neurosci, 2017, 10: 320.
[11] STEHBERG J, MORAGA-AMARO R, SALAZAR C, et al. Release of gliotransmitters through astroglial connexin 43 hemichannels is necessary for fear memory consolidation in the basolateral amygdala [J]. Faseb J, 2012, 26(9): 3649-3657.
[12] ORELLANA JA, MORAGA-AMARO R, DíAZ-GALARCE R, et al. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons [J]. Front Cell Neurosci, 2015, 9: 102.
[13] MEUNIER C, WANG N, YIC, et al. Contribution of astroglial Cx43 hemichannels to the modulation of glutamatergic currents by Dserine in the mouse prefrontal cortex [J]. J Neurosci, 2017, 37(37): 9064-9075.
[14] BENNETT MV, CONTRERAS JE, BUKAUSKAS FF, et al. New roles for astrocytes: gap junction hemichannels have something to communicate [J]. Trends Neurosci, 2003, 26(11): 610-617.
[15] NAUS CC, BECHBERGER JF, PAUL DL. Gap junction gene expression in human seizure disorder [J]. Exp Neurol, 1991, 111(2): 198-203.
[16] WALRAVE L, VINKEN M, LEYBAERT L, et al. Astrocytic connexin43 channels as candidate targets in epilepsy treatment [J]. Biomolecules, 2020, 10(11): 1578.
[17] ZHANG M, WANG ZZ, CHEN NH. Connexin 43 phosphorylation: implications in multiple diseases [J]. Molecules, 2023, 28(13): 4914.
[18] DESHPANDE T, LI T, HERDE MK, et al. Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy [J]. Glia, 2017, 65(11): 1809-1820.
[19] DU Y, LI R, FU D, et al. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy [J]. CNS Neurosci Ther, 2024, 30(4): e14717.
[20] DONG H, ZHOU XW, WANG X, et al. Complex role of connexin 43 in astrocytic tumors and possible promotion of glioma-associated epileptic discharge [J]. Mol Med Report, 2017, 16(6): 7890-7900.
[21] CHE J, DEPALMA TJ, SIVAKUMAR H, et al. αCT1 peptide sensitizes glioma cells to temozolomide in a glioblastoma organoid platform [J]. Biotechnol Bioeng, 2023, 120(4): 1108-1119.
[22] BARACALDO-SANTAMARíA D, CORRALES-HERNáNDEZ MG, ORTIZ-VERGARA M C, et al. Connexins and pannexins: important players in neurodevelopment, neurological diseases, and potential therapeutics [J]. Biomedicines, 2022, 10(9): 2237.
[23] MOTAGHI S, SAYYAH M, BABAPOUR V, et al. Hippocampal expression of connexin36 and connexin43 during epileptogenesis in pilocarpine model of epilepsy [J]. Iran Biomed J, 2017, 21(3): 167-173.
[24] LIU B, RAN X, YI Y, et al. Anticonvulsant effect of carbenoxolone on chronic epileptic rats and its mechanism related to connexin and high-frequency oscillations [J]. Front Mol Neurosci, 2022, 15: 870947.
[25] ANDRIOLI A, FABENE PF, MUDò G, et al. Downregulation of the astroglial connexin expression and neurodegeneration after pilocarpine-induced status epilepticus [J]. Int J Mol Sci, 2022, 24(1): 23.
[26] ALTAS B, RHEE HJ, JU A, et al. Nedd4-2-dependent regulation of astrocytic Kir4.1 and connexin43 controls neuronal network activity [J]. J Cell Biol, 2024, 223(1): e201902050.
[27] MEN C, WANG Z, ZHOU L, et al. Transient receptor potential vanilloid 4 is involved in the upregulation of connexin expression following pilocarpine-induced status epilepticus in mice [J]. Brain Res Bull, 2019, 152: 128-133.
[28] BREITHAUSEN B, KAUTZMANN S, BOEHLEN A, et al. Limited contribution of astroglial gap junction coupling to buffering of extracellular K(+) in CA1 stratum radiatum [J]. Glia, 2020, 68(5): 918-931.
[29] ROSE CR, FELIX L, ZEUG A, et al. Astroglial glutamate signaling and uptake in the hippocampus [J]. Front Mol Neurosci, 2017, 10: 451.
[30] RIQUELME J, WELLMANN M, SOTOMAYOR-ZARATE R, et al. Gliotransmission: a novel target for the development of antiseizure drugs [J]. Neuroscientist, 2020, 26(4): 293-309.
[31] MULLER J, TIMMERMANN A, HENNING L, et al. Astrocytic GABA accumulation in experimental temporal lobe epilepsy [J]. Front Neurol, 2020, 11: 614923.
[32] HOSLI L, BININI N, FERRARI KD, et al. Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning [J]. Cell Rep, 2022, 38(10): 110484.
[33] PHILIPPOT C, GRIEMSMANN S, JABS R, et al. Astrocytes and oligodendrocytes in the thalamus jointly maintain synaptic activity by supplying metabolites [J]. Cell Rep, 2021, 34(3): 108642.
[34] HENNEBERGER C. Does rapid and physiological astrocyte-neuron signalling amplify epileptic activity [J]. J Physiol, 2017, 595(6): 1917-1927.
[35] GIGOUT S, LOUVEL J, RINALDI D, et al. Thalamocortical relationships and network synchronization in a new genetic model "in mirror" for absence epilepsy [J]. Brain Res, 2013, 1525: 39-52.
[36] CHANG WP, WU JJ, SHYU BC. Thalamic modulation of cingulate seizure activity via the regulation of gap junctions in mice thalamocingulate slice [J]. PLoS One, 2013, 8(5): e62952.
[37] ROSS FM, GWYN P, SPANSWICK D, et al. Carbenoxolone depresses spontaneous epileptiform activity in the CA1 region of rat hippocampal slices [J]. Neuroscience, 2000, 100(4): 789-796.
[38] GIGOUT S, LOUVEL J, KAWASAKI H, et al. Effects of gap junction blockers on human neocortical synchronization [J]. Neurobiol Dis, 2006, 22(3): 496-508.
[39] VOLNOVA A, TSYTSAREV V, GANINA O, et al. The anti-epileptic effects of carbenoxolone in vitro and in vivo [J]. Int J Mol Sci, 2022, 23(2): 663.
[40] RAN X, XIANG J, SONG PP, et al. Effects of gap junctions blockers on fast ripples and connexin in rat hippocampi after status epilepticus [J]. Epilepsy Res, 2018, 146: 28-35.
[41] GIGOUT S, LOUVEL J, PUMAIN R. Effects in vitro and in vivo of a gap junction blocker on epileptiform activities in a genetic model of absence epilepsy [J]. Epilepsy Res, 2006, 69(1): 15-29.
[42] WU XM, WANG GL, MIAO J, et al. Effect of connexin 36 blockers on the neuronal cytoskeleton and synaptic plasticity in kainic acidkindled rats [J]. Transl Neurosci, 2015, 6(1): 252-258.
[43] BRAGIN A, MODY I, WILSON CL, et al. Local generation of fast ripples in epileptic brain [J]. J Neurosci, 2002, 22(5): 2012-2021.
[44] FRANCO-PéREZ J, BALLESTEROS-ZEBADúA P, MANJARREZMARMOLEJO J. Unilateral microinjection of carbenoxolone into the pontis caudalis nucleus inhibits the pentylenetetrazole-induced epileptiform activity in rats [J]. Neurosci Lett, 2015, 602: 38-43.
[45] MANJARREZ-MARMOLEJO J, FRANCO-PéREZ J. Gap junction blockers: an overview of their effects on induced seizures in animal models [J]. Curr Neuropharmacol, 2016, 14(7): 759-771.
[46] BRAET K, VANDAMME W, MARTIN PE, et al. Photoliberating inositol-1,4,5-trisphosphate triggers ATP release that is blocked by the connexin mimetic peptide gap 26 [J]. Cell Calcium, 2003, 33(1): 37-48.
[47] TORRES A, WANG F, XU Q, et al. Extracellular Ca2+ acts as a mediator of communication from neurons to glia [J]. Sci Signal, 2012, 5(208): ra8-ra8.
[48] SAMOILOVA M, WENTLANDT K, ADAMCHIK Y, et al. Connexin 43 mimetic peptides inhibit spontaneous epileptiform activity in organotypic hippocampal slice cultures [J]. Exp Neurol, 2008, 210 (2): 762-775.
[49] COUTINHO FP, GREEN CR, ACOSTA ML, et al. Xentry-gap19 inhibits connexin43 hemichannel opening especially during hypoxic injury [J]. Drug Deliv Transl Res, 2020, 10(3): 751-765.
[50] WALRAVE L, PIERRE A, ALBERTINI G, et al. Inhibition of astroglial connexin43 hemichannels with TAT-gap19 exerts anticonvulsant effects in rodents [J]. Glia, 2018, 66(8): 1788-1804.
[51] DOBOLYI A, KéKESI KA, JUHáSZ G, et al. Receptors of peptides as therapeutic targets in epilepsy research [J]. Curr Med Chem, 2014, 21(6): 764-787.
[52] GUO A, ZHANG H, LI H, et al. Inhibition of connexin hemichannels alleviates neuroinflammation and hyperexcitability in temporal lobe epilepsy [J]. Proc Natl Acad Sci USA, 2022, 119(45): e2213162119.
[53] LI H, GUO A, SALGADO M, et al. The connexin hemichannel inhibitor D4 produces rapid antidepressant-like effects in mice [J]. J Neuroinflammation, 2023, 20(1): 191.
[54] CISTERNA BA, VARGAS AA, PUEBLA C, et al. Active acetylcholine receptors prevent the atrophy of skeletal muscles and favor reinnervation [J]. Nat Commun, 2020, 11(1): 1073.
相似文献/References:
[1]云德波 杨宇焦 张 逵 范润金 张 渊 杜贻庆.瘤周谷氨酸、天门冬氨酸水平与胶质瘤继发性
癫痫的相关性[J].中国临床神经外科杂志,2016,(06):331.[doi:10.13798/j.issn.1009-153X.2016.06.004]
YUN De-bo,YANG Yu-Jiao,ZHANG Kui,et al.Relationship of levels of glutamate and aspartate in peritumorous tissues with seizures in patients with gliomas[J].,2016,(11):331.[doi:10.13798/j.issn.1009-153X.2016.06.004]
[2]周长帅 任志伟 综述 遇 涛 李勇杰 审校.岛叶癫痫症状学研究进展周长[J].中国临床神经外科杂志,2016,(04):249.[doi:10.13798/j.issn.1009-153X.2016.04.021]
[3]田春雷 王晓丹 综述 王雄伟 审校.局灶性皮层发育不良与mTOR信号通路[J].中国临床神经外科杂志,2016,(02):122.[doi:10.13798/j.issn.1009-153X.2016.02.025]
[4]黄 河 杜 浩 吕丽辉 宋 健 黄 成 何远志 孙荣辉 丁慧超 黄玲玥 徐国政 马廉亭.影像融合及颅内电极三维重建在癫痫术前计划中的应用[J].中国临床神经外科杂志,2015,(12):705.[doi:10.13798/j.issn.1009-153X.2015.12.001]
HUANG He,DU Hao,Lü Li-hui,et al.Value of MRI and CT images co-registration and three-dimensional visualization of intracranial electrodes to presurgical planning for epilepsy surgery[J].,2015,(11):705.[doi:10.13798/j.issn.1009-153X.2015.12.001]
[5]孙 拯 谢延风 石全红 但 炜 詹 彦 陆 波 孙晓川.以癫痫起病的幕上脑海绵状血管瘤的治疗[J].中国临床神经外科杂志,2015,(12):709.[doi:10.13798/j.issn.1009-153X.2015.12.002]
SUN Zheng,XIE Yan-feng,SHI Quan-hong,et al.Treatment of supratentorial cerebral cavernous angioma associated with epilepsy as first symptom[J].,2015,(11):709.[doi:10.13798/j.issn.1009-153X.2015.12.002]
[6]王林林 李宗正.癫痫致呼吸停止1例[J].中国临床神经外科杂志,2015,(06):359.[doi:10.13798/j.issn.1009-153X.2015.06.014]
[7]孙荣辉 徐国政 杜 浩 宋 健 黄 河 赵曰圆 马廉亭.MRI与DSA影像融合联合电生理监测对脑动静脉畸形伴癫痫手术的价值[J].中国临床神经外科杂志,2015,(07):403.[doi:10.13798/j.issn.1009-153X.2015.07.007]
SUN Rong-hui,XU Guo-zheng,DU Hao,et al.Value of MRI and 3D-DSA images fusion combined with intraoperative neuro-electrophysiological technique to surgery for intracranial arteriovenous malformation associated with epilepsy[J].,2015,(11):403.[doi:10.13798/j.issn.1009-153X.2015.07.007]
[8]陈 旭 吴 琳 冯达云 王举磊 秦怀洲 高国栋 张治国.头孢曲松钠对大鼠蛛网膜下腔出血后认知功能的影响[J].中国临床神经外科杂志,2015,(04):228.[doi:10.13798/j.issn.1009-153X.2015.04.012]
CHEN Xu,WU Lin,FENG Da-yun,et al.Effect of ceftriaxone on cognitive function after subarachnoid hemorrhage in the adult rats[J].,2015,(11):228.[doi:10.13798/j.issn.1009-153X.2015.04.012]
[9]刘庚勋 综述 李正贤 审校.痫相关低级别中枢神经系统肿瘤的病理学诊断[J].中国临床神经外科杂志,2015,(03):183.[doi:10.13798/j.issn.1009-153X.2015.03.021]
[10]马 炜 张 华 李焕发 王 超 孟 强 刘 备 武 昊.伴有丛集发作的儿童癫痫患者的手术治疗[J].中国临床神经外科杂志,2015,(01):8.[doi:10.13798/j.issn.1009-153X.2015.01.003]
MA Wei,ZHANG Hua,LI Huan-fa,et al.Surgery for children with epilepsy and seizure clustering (report of 33 cases)[J].,2015,(11):8.[doi:10.13798/j.issn.1009-153X.2015.01.003]