[1]宋旅萌,李舜,熊平,等.外泌体环状RNA在胶质瘤发生发展中的作用[J].中国临床神经外科杂志,2024,29(12):761-766.[doi:10.13798/j.issn.1009-153X.2024.12.013]
 SONG Lü-meng,LI Shun,XIONG Ping,et al.Role of exosomal circular RNA in the tumorigenesis and development of glioma[J].,2024,29(12):761-766.[doi:10.13798/j.issn.1009-153X.2024.12.013]
点击复制

外泌体环状RNA在胶质瘤发生发展中的作用()
分享到:

《中国临床神经外科杂志》[ISSN:1009-153X/CN:42-1603/TN]

卷:
29
期数:
2024年12期
页码:
761-766
栏目:
综述
出版日期:
2024-12-30

文章信息/Info

Title:
Role of exosomal circular RNA in the tumorigenesis and development of glioma
文章编号:
1009-153X(2024)12-0761-06
作者:
宋旅萌李舜熊平程银川夏小超王子豪
637000四川南充,川北医学院附属医院神经外科(宋旅萌、李舜、熊平、程银川、夏小超、王子豪)
Author(s):
SONG Lü-meng LI Shun XIONG Ping CHENG Yin-chuan XIA Xiao-chao WANG Zi-hao
Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
关键词:
胶质瘤外泌体环状RNA
Keywords:
Glioma Exosome Circular RNA
分类号:
R 739.41
DOI:
10.13798/j.issn.1009-153X.2024.12.013
文献标志码:
A
摘要:
胶质瘤是最常见、最致命的原发性中枢神经系统恶性肿瘤。目前,胶质瘤的治疗手段主要采用手术切除联合放疗、化疗等综合治疗,但几乎所有恶性胶质瘤术后均会复发,并且化疗耐药率高,放疗抵抗率高。因此,探究胶质瘤发生发展的分子机制、寻找新的治疗靶点至关重要。外泌体是一种参与细胞间信息交流的细胞外囊泡,携带各种不同的物质,例如蛋白质、核酸、脂质等,在肿瘤微环境中发挥重要作用。环状RNA(circRNA)是可由外泌体携带的一类稳定的非编码RNA,其通过作为微小RNA(miRNA)海绵,在胶质瘤的发生发展中发挥重要作用。本文综述外泌体circRNA在胶质瘤增殖迁移、血管生成、耐药等方面的最新研究进展,并阐其在临床应用中的价值。
Abstract:
Glioma is the most common and lethal primary malignant tumor of the central nervous system. At present, the treatment methods for glioma mainly adopt comprehensive treatments such as surgical resection combined with radiotherapy and chemotherapy. Nevertheless, almost all malignant gliomas will relapse after surgery, and the rates of chemotherapy resistance and radiotherapy resistance are high. Hence, exploring the molecular mechanisms of glioma occurrence and development and seeking new therapeutic targets are of paramount significance. Exosomes are extracellular vesicles involved in intercellular information communication, carrying various substances such as proteins, nucleic acids, and lipids, and playing a crucial role in the tumor microenvironment. Circular RNA (circRNA) is a type of stable non-coding RNA that can be carried by exosomes and functions as a microRNA (miRNA) sponge, exerting an important role in the occurrence and development of glioma. This article reviews the latest research progress of exosomal circRNA in aspects such as glioma proliferation and migration, angiogenesis, and drug resistance, and expounds on its value in clinical application.

参考文献/References:

[1] OSTROM QT, PRICE M, NEFF C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019 [J]. Neuro Oncol, 2022, 24(Suppl 5): v1-v95.
[2] LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary [J]. Neuro Oncol, 2021, 23(8): 1231-1251.
[3] BARTHEL L, HADAMITZKY M, DAMMANN P, et al. Glioma: molecular signature and crossroads with tumor microenvironment [J]. Cancer Metastasis Rev, 2022, 41(1): 53-75.
[4] TLSTY TD, COUSSENS LM. Tumor stroma and regulation of cancer development [J]. Annu Rev Pathol, 2006, 1: 119-150.
[5] CHENG J, MENG J, ZHU L, et al. Exosomal noncoding RNAs in glioma: biological functions and potential clinical applications [J]. Mol Cancer, 2020, 19(1): 66.
[6] KALLURI R, LEBLEU VS. The biology, function, and biomedical applications of exosomes [J]. Science, 2020, 367(6478): eaau6977.
[7] VAN NIEL G, D'ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles [J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
[8] PASKEH M DA, ENTEZARI M, MIRZAEI S, et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling [J]. J Hematol Oncol, 2022, 15(1): 83.
[9] MATHIEU M, MARTIN-JAULAR L, LAVIEU G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication [J]. Nat Cell Biol, 2019, 21(1): 9-17.
[10] DELORME-AXFORD E, DONKER RB, MOUILLET JF, et al. Human placental trophoblasts confer viral resistance to recipient cells [J]. Proc Natl Acad Sci USA, 2013, 110(29): 12048-12053.
[11] ADMYRE C, JOHANSSON SM, QAZI KR, et al. Exosomes with immune modulatory features are present in human breast milk [J]. J Immunol, 2007, 179(3): 1969-1978.
[12] CHENG Y, SCHOREY JS. Exosomes carrying mycobacterial antigens can protect mice against Mycobacterium tuberculosis infection [J]. Eur J Immunol, 2013, 43(12): 3279-3290.
[13] SISQUELLA X, OFIR-BIRIN Y, PIMENTEL MA, et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors [J]. Nat Commun, 2017, 8(1): 1985.
[14] LUO H, ZHANG H, MAO J, et al. Exosome-based nanoimmunotherapy targeting TAMs, a promising strategy for glioma [J]. Cell Death Dis, 2023, 14(4): 235.
[15] CHEN LL. The expanding regulatory mechanisms and cellular functions of circular RNAs [J]. Nat Rev Mol Cell Biol, 2020, 21(8): 475-490.
[16] MISIR S, WU N, YANG BB. Specific expression and functions of circular RNAs [J]. Cell Death Differ, 2022, 29(3): 481-491.
[17] LI W, LIU JQ, CHEN M, et al. Circular RNA in cancer development and immune regulation [J]. J Cell Mol Med, 2022, 26(6): 1785-1798.
[18] COCQUERELLE C, MASCREZ B, HéTUIN D, et al. Mis-splicing yields circular RNA molecules [J]. FASEB J, 1993, 7(1): 155-160.
[19] HUANG S, YANG B, CHEN BJ, et al. The emerging role of circular RNAs in transcriptome regulation [J]. Genomics, 2017, 109(5-6): 401-107.
[20] GHAZIMORADI MH, BABASHAH S. The role of CircRNA/miRNA/ mRNA axis in breast cancer drug resistance [J]. Front Oncol, 2022, 12: 966083.
[21] HUANG S, LI X, ZHENG H, et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice [J]. Circulation, 2019, 139(25): 2857-2876.
[22] ZHU P, ZHU X, WU J, et al. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3 [J]. Nat Immunol, 2019, 20(2): 183-194.
[23] YANG Y, GAO X, ZHANG M, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis [J]. J Natl Cancer Inst, 2018, 110(3): 304-315.
[24] XU K, DING L, CHANG TC, et al. Structure and evolution of double minutes in diagnosis and relapse brain tumors [J]. Acta Neuropathol, 2019, 137(1): 123-137.
[25] SHI X, WANG B, FENG X, et al. circRNAs and exosomes: a mysterious frontier for human cancer [J]. Mol Ther Nucleic Acids, 2020, 19: 384-392.
[26] LI Y, ZHENG X, WANG J, et al. Exosomal circ-AHCY promotes glioblastoma cell growth via Wnt/β-catenin signaling pathway [J]. Ann Clin Transl Neurol, 2023, 10(6): 865-878.
[27] ZHANG S, GUAN N, MAO X, et al. Exosomal circRNA_104948 enhances the progression of glioma by regulating miR-29b-3p and DNMT3B/MTSS1 signaling [J]. J Environ Pathol Toxicol Oncol, 2022, 41(2): 47-59.
[28] HAN Y, LIU Y, ZHANG B, et al. Exosomal circRNA 0001445 promotes glioma progression through miRNA-127-5p/SNX5 pathway [J]. Aging (Albany NY), 2021, 13(9): 13287-13299.
[29] HOMBACH-KLONISCH S, MEHRPOUR M, SHOJAEI S, et al. Glioblastoma and chemoresistance to alkylating agents: involvement of apoptosis, autophagy, and unfolded protein response [J]. Pharmacol Ther, 2018, 184: 13-41.
[30] GENG X, ZHANG Y, LIN X, et al. Exosomal circWDR62 promotes temozolomide resistance and malignant progression through regulation of the miR-370-3p/MGMT axis in glioma [J]. Cell Death Dis, 2022, 13(7): 596.
[31] ZHANG C, ZHOU Y, GAO Y, et al. Radiated glioblastoma cellderived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis [J]. J Transl Med, 2022, 20(1): 388.
[32] BALANDEH E, MOHAMMADSHAFIE K, MAHMOUDI Y, et al. Roles of Non-coding RNAs and angiogenesis in glioblastoma [J]. Front Cell Dev Biol, 2021, 9: 716462.
[33] LI Y, CHEN J, CHEN Z, et al. CircGLIS3 promotes high-grade glioma invasion via modulating Ezrin phosphorylation [J]. Front Cell Dev Biol, 2021, 9: 663207.
[34] SHI L, CAO Y, YUAN W, et al. Exosomal circRNA BTG2 derived from RBP-J overexpressed-macrophages inhibits glioma progression via miR-25-3p/PTEN [J]. Cell Death Dis, 2022, 13(5): 506.
[35] PAN Z, ZHAO R, LI B, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3 [J]. Mol Cancer, 2022, 21(1): 16.
[36] XIA D, GU X. Plasmatic exosome-derived circRNAs panel act as fingerprint for glioblastoma [J]. Aging (Albany NY), 2021, 13(15): 19575-19586.
[37] LI P, XU Z, LIU T, et al. Circular RNA sequencing reveals serum exosome circular RNA panel for high-grade astrocytoma diagnosis [J]. Clin Chem, 2022, 68(2): 332-343.
[38] WANG X, CAO Q, SHI Y, et al. Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/ PDGFRα pathway as a key regulatory mechanism in glioblastoma progression and radioresistance: Functional validation and clinical theranostic significance [J]. Int J Biol Sci, 2021, 17(4): 1061-1078.

相似文献/References:

[1]常英男 王 策 赵天书.SOX2基因在胶质瘤中的表达及生物学作用[J].中国临床神经外科杂志,2016,(05):270.[doi:10.13798/j.issn.1009-153X.2016.05.005]
 CHANG Ying-nan,WANG Ce,ZHAO Tian-shu..Expression of SOX2 gene and its biological role in human gliomas[J].,2016,(12):270.[doi:10.13798/j.issn.1009-153X.2016.05.005]
[2]赛 克 陈忠平.胶质瘤的疗效评价[J].中国临床神经外科杂志,2016,(06):321.[doi:10.13798/j.issn.1009-153X.2016.06.001]
[3]许 耿 路俊锋 杨 忠 施建斌 吴秋月 王 烨 庄冬晓 吴劲松.神经电生理监测技术在功能区胶质瘤术中的应用[J].中国临床神经外科杂志,2016,(06):323.[doi:10.13798/j.issn.1009-153X.2016.06.002]
 XU Geng,LU Jun-feng,YANG Zhong,et al.Application of intraoperative neuroelectrophysiologic monitoring to gliomas resection in eloquent function brain regions[J].,2016,(12):323.[doi:10.13798/j.issn.1009-153X.2016.06.002]
[4]李剑峰 陈银生 赛 克 张湘衡 柯 超 杨群英 牟永告 许海雄 陈忠平.173例胶质瘤预后的影响因素分析[J].中国临床神经外科杂志,2016,(06):327.[doi:10.13798/j.issn.1009-153X.2016.06.003]
 LI Jian-feng,CHEN Yin-sheng,SAI Ke,et al.Prognostic factors for gliomas: analysis of 173 cases[J].,2016,(12):327.[doi:10.13798/j.issn.1009-153X.2016.06.003]
[5]云德波 杨宇焦 张 逵 范润金 张 渊 杜贻庆.瘤周谷氨酸、天门冬氨酸水平与胶质瘤继发性 癫痫的相关性[J].中国临床神经外科杂志,2016,(06):331.[doi:10.13798/j.issn.1009-153X.2016.06.004]
 YUN De-bo,YANG Yu-Jiao,ZHANG Kui,et al.Relationship of levels of glutamate and aspartate in peritumorous tissues with seizures in patients with gliomas[J].,2016,(12):331.[doi:10.13798/j.issn.1009-153X.2016.06.004]
[6]黄书岚 成于思 王 辉 汪超甲.FAK siRNA重组质粒的构建及其对胶质瘤U251细胞 增殖及侵袭能力的抑制作用[J].中国临床神经外科杂志,2016,(06):336.[doi:10.13798/j.issn.1009-153X.2016.06.006]
 HUANG Shu-lan,CHENG Yu-si,WANG Hui,et al.Construction of siRNA recombinant plasmid targeting focal adhesion kinase gene and its effect on the proliferation and invasiveness of human glioma U251cells[J].,2016,(12):336.[doi:10.13798/j.issn.1009-153X.2016.06.006]
[7]林 雨 张 恺 李 帅 杨学军.磁共振数字化手术单元在指导胶质瘤治疗中的作用[J].中国临床神经外科杂志,2016,(06):345.[doi:10.13798/j.issn.1009-153X.2016.06.009]
[8]戴黎明 徐成仕 王泽芬 曹长军 李志强.VEGF单抗对低氧环境下C6胶质瘤细胞侵袭性的影响[J].中国临床神经外科杂志,2016,(04):219.[doi:10.13798/j.issn.1009-153X.2016.04.009]
 DAI Li-ming,XU Cheng-shi,WANG Ze-fen,et al.Effect of nonoclonal antibody of VEGF on C6 glioma cells invasiveness under hypoxia and the role of FAK/Pyk2[J].,2016,(12):219.[doi:10.13798/j.issn.1009-153X.2016.04.009]
[9]彭泽生 田道锋 张申起 陈谦学.miR-370-3p对胶质母细胞瘤U87-MG细胞株增殖能力的影响[J].中国临床神经外科杂志,2016,(04):223.[doi:10.13798/j.issn.1009-153X.2016.04.010]
 PENG Ze-sheng,TIAN Dao-feng,ZHANG Shen-qi,et al.Effects of MircoRNA-370-3p on proliferation of glioma cell line U87-MG and its potential mechanism[J].,2016,(12):223.[doi:10.13798/j.issn.1009-153X.2016.04.010]
[10]冯 驰 郭双毅 程龙海 罗 杰.氯喹通过抑制自噬促进TRAIL诱导的胶质瘤细胞凋亡[J].中国临床神经外科杂志,2016,(04):227.[doi:10.13798/j.issn.1009-153X.2016.04.011]
 FENG Chi,GUO Shuang-yi,CHENG Long-hai,et al.Chloroquine promotes TRAIL-induced apoptosis of glioma cells through inhibition of autophagy[J].,2016,(12):227.[doi:10.13798/j.issn.1009-153X.2016.04.011]
[11]任光辉 李武雄 齐利豪.胶质瘤干细胞外泌体通过PI3K/Akt信号通路促进胶质瘤U87细胞侵袭、迁移[J].中国临床神经外科杂志,2021,26(03):176.[doi:10.13798/j.issn.1009-153X.2021.03.011]
 REN Guang-hui,LI Wu-xiong,QI Li-hao.Glioma stem cell-derived exosomes promote glioma U87 cell invasion and migration through PI3K/Akt signaling pathway[J].,2021,26(12):176.[doi:10.13798/j.issn.1009-153X.2021.03.011]

备注/Memo

备注/Memo:
(2023-04-12收稿,2023-11-02修回)
通信作者:李 舜,Email:morelee@163.com
更新日期/Last Update: 2024-12-30