参考文献/References:
[1] OSTROM QT, PRICE M, NEFF C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015-2019 [J]. Neuro Oncol, 2022, 24(Suppl 5): v1-v95.
[2] LOUIS D N, PERRY A, WESSELING P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary [J]. Neuro Oncol, 2021, 23(8): 1231-1251.
[3] BARTHEL L, HADAMITZKY M, DAMMANN P, et al. Glioma: molecular signature and crossroads with tumor microenvironment [J]. Cancer Metastasis Rev, 2022, 41(1): 53-75.
[4] TLSTY TD, COUSSENS LM. Tumor stroma and regulation of cancer development [J]. Annu Rev Pathol, 2006, 1: 119-150.
[5] CHENG J, MENG J, ZHU L, et al. Exosomal noncoding RNAs in glioma: biological functions and potential clinical applications [J]. Mol Cancer, 2020, 19(1): 66.
[6] KALLURI R, LEBLEU VS. The biology, function, and biomedical applications of exosomes [J]. Science, 2020, 367(6478): eaau6977.
[7] VAN NIEL G, D'ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles [J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228.
[8] PASKEH M DA, ENTEZARI M, MIRZAEI S, et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling [J]. J Hematol Oncol, 2022, 15(1): 83.
[9] MATHIEU M, MARTIN-JAULAR L, LAVIEU G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication [J]. Nat Cell Biol, 2019, 21(1): 9-17.
[10] DELORME-AXFORD E, DONKER RB, MOUILLET JF, et al. Human placental trophoblasts confer viral resistance to recipient cells [J]. Proc Natl Acad Sci USA, 2013, 110(29): 12048-12053.
[11] ADMYRE C, JOHANSSON SM, QAZI KR, et al. Exosomes with immune modulatory features are present in human breast milk [J]. J Immunol, 2007, 179(3): 1969-1978.
[12] CHENG Y, SCHOREY JS. Exosomes carrying mycobacterial antigens can protect mice against Mycobacterium tuberculosis infection [J]. Eur J Immunol, 2013, 43(12): 3279-3290.
[13] SISQUELLA X, OFIR-BIRIN Y, PIMENTEL MA, et al. Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors [J]. Nat Commun, 2017, 8(1): 1985.
[14] LUO H, ZHANG H, MAO J, et al. Exosome-based nanoimmunotherapy targeting TAMs, a promising strategy for glioma [J]. Cell Death Dis, 2023, 14(4): 235.
[15] CHEN LL. The expanding regulatory mechanisms and cellular functions of circular RNAs [J]. Nat Rev Mol Cell Biol, 2020, 21(8): 475-490.
[16] MISIR S, WU N, YANG BB. Specific expression and functions of circular RNAs [J]. Cell Death Differ, 2022, 29(3): 481-491.
[17] LI W, LIU JQ, CHEN M, et al. Circular RNA in cancer development and immune regulation [J]. J Cell Mol Med, 2022, 26(6): 1785-1798.
[18] COCQUERELLE C, MASCREZ B, HéTUIN D, et al. Mis-splicing yields circular RNA molecules [J]. FASEB J, 1993, 7(1): 155-160.
[19] HUANG S, YANG B, CHEN BJ, et al. The emerging role of circular RNAs in transcriptome regulation [J]. Genomics, 2017, 109(5-6): 401-107.
[20] GHAZIMORADI MH, BABASHAH S. The role of CircRNA/miRNA/ mRNA axis in breast cancer drug resistance [J]. Front Oncol, 2022, 12: 966083.
[21] HUANG S, LI X, ZHENG H, et al. Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice [J]. Circulation, 2019, 139(25): 2857-2876.
[22] ZHU P, ZHU X, WU J, et al. IL-13 secreted by ILC2s promotes the self-renewal of intestinal stem cells through circular RNA circPan3 [J]. Nat Immunol, 2019, 20(2): 183-194.
[23] YANG Y, GAO X, ZHANG M, et al. Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis [J]. J Natl Cancer Inst, 2018, 110(3): 304-315.
[24] XU K, DING L, CHANG TC, et al. Structure and evolution of double minutes in diagnosis and relapse brain tumors [J]. Acta Neuropathol, 2019, 137(1): 123-137.
[25] SHI X, WANG B, FENG X, et al. circRNAs and exosomes: a mysterious frontier for human cancer [J]. Mol Ther Nucleic Acids, 2020, 19: 384-392.
[26] LI Y, ZHENG X, WANG J, et al. Exosomal circ-AHCY promotes glioblastoma cell growth via Wnt/β-catenin signaling pathway [J]. Ann Clin Transl Neurol, 2023, 10(6): 865-878.
[27] ZHANG S, GUAN N, MAO X, et al. Exosomal circRNA_104948 enhances the progression of glioma by regulating miR-29b-3p and DNMT3B/MTSS1 signaling [J]. J Environ Pathol Toxicol Oncol, 2022, 41(2): 47-59.
[28] HAN Y, LIU Y, ZHANG B, et al. Exosomal circRNA 0001445 promotes glioma progression through miRNA-127-5p/SNX5 pathway [J]. Aging (Albany NY), 2021, 13(9): 13287-13299.
[29] HOMBACH-KLONISCH S, MEHRPOUR M, SHOJAEI S, et al. Glioblastoma and chemoresistance to alkylating agents: involvement of apoptosis, autophagy, and unfolded protein response [J]. Pharmacol Ther, 2018, 184: 13-41.
[30] GENG X, ZHANG Y, LIN X, et al. Exosomal circWDR62 promotes temozolomide resistance and malignant progression through regulation of the miR-370-3p/MGMT axis in glioma [J]. Cell Death Dis, 2022, 13(7): 596.
[31] ZHANG C, ZHOU Y, GAO Y, et al. Radiated glioblastoma cellderived exosomal circ_0012381 induce M2 polarization of microglia to promote the growth of glioblastoma by CCL2/CCR2 axis [J]. J Transl Med, 2022, 20(1): 388.
[32] BALANDEH E, MOHAMMADSHAFIE K, MAHMOUDI Y, et al. Roles of Non-coding RNAs and angiogenesis in glioblastoma [J]. Front Cell Dev Biol, 2021, 9: 716462.
[33] LI Y, CHEN J, CHEN Z, et al. CircGLIS3 promotes high-grade glioma invasion via modulating Ezrin phosphorylation [J]. Front Cell Dev Biol, 2021, 9: 663207.
[34] SHI L, CAO Y, YUAN W, et al. Exosomal circRNA BTG2 derived from RBP-J overexpressed-macrophages inhibits glioma progression via miR-25-3p/PTEN [J]. Cell Death Dis, 2022, 13(5): 506.
[35] PAN Z, ZHAO R, LI B, et al. EWSR1-induced circNEIL3 promotes glioma progression and exosome-mediated macrophage immunosuppressive polarization via stabilizing IGF2BP3 [J]. Mol Cancer, 2022, 21(1): 16.
[36] XIA D, GU X. Plasmatic exosome-derived circRNAs panel act as fingerprint for glioblastoma [J]. Aging (Albany NY), 2021, 13(15): 19575-19586.
[37] LI P, XU Z, LIU T, et al. Circular RNA sequencing reveals serum exosome circular RNA panel for high-grade astrocytoma diagnosis [J]. Clin Chem, 2022, 68(2): 332-343.
[38] WANG X, CAO Q, SHI Y, et al. Identification of low-dose radiation-induced exosomal circ-METRN and miR-4709-3p/GRB14/ PDGFRα pathway as a key regulatory mechanism in glioblastoma progression and radioresistance: Functional validation and clinical theranostic significance [J]. Int J Biol Sci, 2021, 17(4): 1061-1078.
相似文献/References:
[1]常英男 王 策 赵天书.SOX2基因在胶质瘤中的表达及生物学作用[J].中国临床神经外科杂志,2016,(05):270.[doi:10.13798/j.issn.1009-153X.2016.05.005]
CHANG Ying-nan,WANG Ce,ZHAO Tian-shu..Expression of SOX2 gene and its biological role in human gliomas[J].,2016,(12):270.[doi:10.13798/j.issn.1009-153X.2016.05.005]
[2]赛 克 陈忠平.胶质瘤的疗效评价[J].中国临床神经外科杂志,2016,(06):321.[doi:10.13798/j.issn.1009-153X.2016.06.001]
[3]许 耿 路俊锋 杨 忠 施建斌 吴秋月 王 烨 庄冬晓 吴劲松.神经电生理监测技术在功能区胶质瘤术中的应用[J].中国临床神经外科杂志,2016,(06):323.[doi:10.13798/j.issn.1009-153X.2016.06.002]
XU Geng,LU Jun-feng,YANG Zhong,et al.Application of intraoperative neuroelectrophysiologic monitoring to gliomas resection in eloquent function brain regions[J].,2016,(12):323.[doi:10.13798/j.issn.1009-153X.2016.06.002]
[4]李剑峰 陈银生 赛 克 张湘衡 柯 超 杨群英 牟永告 许海雄 陈忠平.173例胶质瘤预后的影响因素分析[J].中国临床神经外科杂志,2016,(06):327.[doi:10.13798/j.issn.1009-153X.2016.06.003]
LI Jian-feng,CHEN Yin-sheng,SAI Ke,et al.Prognostic factors for gliomas: analysis of 173 cases[J].,2016,(12):327.[doi:10.13798/j.issn.1009-153X.2016.06.003]
[5]云德波 杨宇焦 张 逵 范润金 张 渊 杜贻庆.瘤周谷氨酸、天门冬氨酸水平与胶质瘤继发性
癫痫的相关性[J].中国临床神经外科杂志,2016,(06):331.[doi:10.13798/j.issn.1009-153X.2016.06.004]
YUN De-bo,YANG Yu-Jiao,ZHANG Kui,et al.Relationship of levels of glutamate and aspartate in peritumorous tissues with seizures in patients with gliomas[J].,2016,(12):331.[doi:10.13798/j.issn.1009-153X.2016.06.004]
[6]黄书岚 成于思 王 辉 汪超甲.FAK siRNA重组质粒的构建及其对胶质瘤U251细胞
增殖及侵袭能力的抑制作用[J].中国临床神经外科杂志,2016,(06):336.[doi:10.13798/j.issn.1009-153X.2016.06.006]
HUANG Shu-lan,CHENG Yu-si,WANG Hui,et al.Construction of siRNA recombinant plasmid targeting focal adhesion kinase gene and its effect on the proliferation and invasiveness of human glioma U251cells[J].,2016,(12):336.[doi:10.13798/j.issn.1009-153X.2016.06.006]
[7]林 雨 张 恺 李 帅 杨学军.磁共振数字化手术单元在指导胶质瘤治疗中的作用[J].中国临床神经外科杂志,2016,(06):345.[doi:10.13798/j.issn.1009-153X.2016.06.009]
[8]戴黎明 徐成仕 王泽芬 曹长军 李志强.VEGF单抗对低氧环境下C6胶质瘤细胞侵袭性的影响[J].中国临床神经外科杂志,2016,(04):219.[doi:10.13798/j.issn.1009-153X.2016.04.009]
DAI Li-ming,XU Cheng-shi,WANG Ze-fen,et al.Effect of nonoclonal antibody of VEGF on C6 glioma cells invasiveness under hypoxia and the role of FAK/Pyk2[J].,2016,(12):219.[doi:10.13798/j.issn.1009-153X.2016.04.009]
[9]彭泽生 田道锋 张申起 陈谦学.miR-370-3p对胶质母细胞瘤U87-MG细胞株增殖能力的影响[J].中国临床神经外科杂志,2016,(04):223.[doi:10.13798/j.issn.1009-153X.2016.04.010]
PENG Ze-sheng,TIAN Dao-feng,ZHANG Shen-qi,et al.Effects of MircoRNA-370-3p on proliferation of glioma cell line U87-MG and its potential mechanism[J].,2016,(12):223.[doi:10.13798/j.issn.1009-153X.2016.04.010]
[10]冯 驰 郭双毅 程龙海 罗 杰.氯喹通过抑制自噬促进TRAIL诱导的胶质瘤细胞凋亡[J].中国临床神经外科杂志,2016,(04):227.[doi:10.13798/j.issn.1009-153X.2016.04.011]
FENG Chi,GUO Shuang-yi,CHENG Long-hai,et al.Chloroquine promotes TRAIL-induced apoptosis of glioma cells through inhibition of autophagy[J].,2016,(12):227.[doi:10.13798/j.issn.1009-153X.2016.04.011]
[11]任光辉 李武雄 齐利豪.胶质瘤干细胞外泌体通过PI3K/Akt信号通路促进胶质瘤U87细胞侵袭、迁移[J].中国临床神经外科杂志,2021,26(03):176.[doi:10.13798/j.issn.1009-153X.2021.03.011]
REN Guang-hui,LI Wu-xiong,QI Li-hao.Glioma stem cell-derived exosomes promote glioma U87 cell invasion and migration through PI3K/Akt signaling pathway[J].,2021,26(12):176.[doi:10.13798/j.issn.1009-153X.2021.03.011]