[1]阙中有 综述,刘胜 审校.胶质瘤生物力学的研究进展[J].中国临床神经外科杂志,2023,28(02):129-131.[doi:10.13798/j.issn.1009-153X.2023.02.023]
点击复制

胶质瘤生物力学的研究进展()
分享到:

《中国临床神经外科杂志》[ISSN:1009-153X/CN:42-1603/TN]

卷:
28
期数:
2023年02期
页码:
129-131
栏目:
综述
出版日期:
2023-02-28

文章信息/Info

文章编号:
1009-153X(2023)02-0129-03
作者:
阙中有 综述刘胜 审校
518118广东,深圳市萨米医疗中心神经外科(阙中有、刘胜)
关键词:
胶质瘤生物力学分子机制
分类号:
R739.41
DOI:
10.13798/j.issn.1009-153X.2023.02.023
文献标志码:
A

参考文献/References:

[1]陈 操,陈 铎. lncRNA在胶质瘤放化疗中作用的研究进展[J]. 中国临床神经外科杂志,2022,27(7):610-613.
[2]Rao J, Lim CT, Hu T, et al. Cancer cell mechanobiology--a new frontier for cancer invasion and metastasis research [J]. Front Cell Dev Biol, 2021, 9: 775012.
[3]Calhoun MA, Cui Y, Elliott EE, et al. MicroRNA-mRNA interactions at low levels of compressive solid stress implicate mir-548 in increased glioblastoma cell motility [J]. Sci Rep, 2020, 10(1): 311.
[4]Pu W, Qiu J, Riggins GJ, et al. Matrix protease production, epithelial-to-mesenchymal transition marker expression and invasion of glioblastoma cells in response to osmotic or hydrostatic pressure [J]. Sci Rep, 2020, 10(1): 2634.
[5]Pu W, Qiu J, Nassar ZD, et al. A role for caveola-forming proteins caveolin-1 and CAVIN1 in the pro-invasive response of glioblastoma to osmotic and hydrostatic pressure [J]. J Cell Mol Med, 2020, 24(6): 3724-3738.
[6]Ilkhanizadeh S, Sabelstr?m H, Miroshnikova YA, et al. Antisecretory factor-mediated inhibition of cell volume dynamics produces antitumor activity in glioblastoma [J]. Mol Cancer Res, 2018, 16(5): 777-790.
[7]Kalinin V. Extracellular matrix interaction in glioma growth: in silico model [J]. J Integr Bioinform, 2020, 17(4): 20200027.
[8]Miroshnikova YA, Mouw JK, Barnes JM, et al. Tissue mechanics promote IDH1-dependent HIF1α-tenascin C feedback to regulate glioblastoma aggression [J]. Nat Cell Biol, 2016, 18(12): 1336-1345.
[9]Barnes JM, Kaushik S, Bainer RO, et al. A Tension-mediated glycocalyx-integrin feedback loop promotes mesenchy-mal-like glioblastoma [J]. Nat Cell Biol, 2018, 20(10): 1203-1214.
[10]Shen Q, Hill T, Cai X, et al. Physical confinement during cancer cell migration triggers therapeutic resistance and cancer stem cell-like behavior [J]. Cancer Lett, 2021, 506: 142-151.
[11]Barnes JM, Przybyla L, Weaver VM. Tissue mechanics regulate brain development, homeostasis and disease [J]. J Cell Sci, 2017, 130(1): 71-82.
[12]Tsitlakidis A, Aifantis EC, Kritis A, et al. Mechanical properties of human glioma [J]. Neurol Res, 2020, 42(12): 1018-1026.
[13]Schregel K, Nazari N, Nowicki MO, et al. Characterization of glioblastoma in an orthotopic mouse model with magnetic resonance elastography [J]. NMR Biomed, 2017, 31(10): e3840.
[14]Khan I, Bui L, Bachoo R, et al. Differences in creep response of GBM cells migrating in confinement [J]. Int Biomech, 2020, 7(1): 44-57.
[15]Alibert C, Pereira D, Lardier N, et al. Multiscale rheology of glioma cells [J]. Biomaterials, 2021, 275: 120903.
[16]Rey JA, Ewing JR, Sarntinoranont M. A computational model of glioma reveals opposing, stiffness-sensitive effects of leaky vasculature and tumor growth on tissue mechanical stress and porosity [J]. Biomech Model Mechanobiol, 2021, 20(5): 1981-2000.
[17]Sen S, Ng WP, Kumar S. Contributions of talin-1 to glioma cell-matrix tensional homeostasis [J]. J R Soc Interface, 2011, 9(71): 1311-1317.
[18]Kim Y, Kumar S. CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility [J]. Mol Cancer Res, 2014, 12(10): 1416-1429.
[19]Kingsmore KM, Logsdon DK, Floyd DH, et al. Interstitial flow differentially increases patient-derived glioblastoma stem cell invasion via CXCR4, CXCL12, and CD44-mediated mechanisms [J]. Integr Biol (Camb), 2016, 8(12): 1246-1260.
[20]Atcha H, Jairaman A, Holt JR, et al. Mechanically activated ion channel piezo1 modulates macrophage polarization and stiffness sensing [J]. Nat Commun, 2021, 12(1): 3256.
[21]Chen X, Wanggou S, Bodalia A, et al. A feedforward mechanism mediated by mechanosensitive ion channel PIEZO1 and tissue mechanics promotes glioma aggression [J]. Neuron, 2018, 100(4): 799-815.
[22]Wong SY, Ulrich TA, Deleyrolle LP, et al. Constitutive activation of myosin-dependent contractility sensitizes glioma tumor-initiating cells to mechanical inputs and reduces tissue invasion [J]. Cancer Res, 2015, 75(6): 1113-1122.
[23]Lee S, Kang H, Shin E, et al. BEX1 and BEX4 induce GBM progression through regulation of actin polymerization and activation of YAP/TAZ signaling [J]. Int J Mol Sci, 2021, 22(18): 9845.
[24]Monzo P, Crestani M, Chong YK, et al. Adaptive mechanoproperties mediated by the formin FMN1 characterize glioblastoma fitness for invasion [J]. Dev Cel, 2021, 56(20): 2841-2855.
[25]Khoonkari M, Liang D, Lima MT, et al. The unfolded protein response sensor PERK mediates stiffness-dependent adaptation in glioblastoma cells [J]. Int J Mol Sci, 2022, 23(12): 6520.
[26]Prahl LS, Bangasser PF, Stopfer LE, et al. Microtubule-based control of motor-clutch system mechanics in glioma cell migration [J]. Cel Rep, 2018, 25(9): 2591-2604.
[27]Isomursu A, Park KY, Hou J, et al. Directed cell migration towards softer environments [J]. Nat Mater, 2022, 21(9): 1081-1090.

相似文献/References:

[1]常英男 王 策 赵天书.SOX2基因在胶质瘤中的表达及生物学作用[J].中国临床神经外科杂志,2016,(05):270.[doi:10.13798/j.issn.1009-153X.2016.05.005]
 CHANG Ying-nan,WANG Ce,ZHAO Tian-shu..Expression of SOX2 gene and its biological role in human gliomas[J].,2016,(02):270.[doi:10.13798/j.issn.1009-153X.2016.05.005]
[2]赛 克 陈忠平.胶质瘤的疗效评价[J].中国临床神经外科杂志,2016,(06):321.[doi:10.13798/j.issn.1009-153X.2016.06.001]
[3]许 耿 路俊锋 杨 忠 施建斌 吴秋月 王 烨 庄冬晓 吴劲松.神经电生理监测技术在功能区胶质瘤术中的应用[J].中国临床神经外科杂志,2016,(06):323.[doi:10.13798/j.issn.1009-153X.2016.06.002]
 XU Geng,LU Jun-feng,YANG Zhong,et al.Application of intraoperative neuroelectrophysiologic monitoring to gliomas resection in eloquent function brain regions[J].,2016,(02):323.[doi:10.13798/j.issn.1009-153X.2016.06.002]
[4]李剑峰 陈银生 赛 克 张湘衡 柯 超 杨群英 牟永告 许海雄 陈忠平.173例胶质瘤预后的影响因素分析[J].中国临床神经外科杂志,2016,(06):327.[doi:10.13798/j.issn.1009-153X.2016.06.003]
 LI Jian-feng,CHEN Yin-sheng,SAI Ke,et al.Prognostic factors for gliomas: analysis of 173 cases[J].,2016,(02):327.[doi:10.13798/j.issn.1009-153X.2016.06.003]
[5]云德波 杨宇焦 张 逵 范润金 张 渊 杜贻庆.瘤周谷氨酸、天门冬氨酸水平与胶质瘤继发性 癫痫的相关性[J].中国临床神经外科杂志,2016,(06):331.[doi:10.13798/j.issn.1009-153X.2016.06.004]
 YUN De-bo,YANG Yu-Jiao,ZHANG Kui,et al.Relationship of levels of glutamate and aspartate in peritumorous tissues with seizures in patients with gliomas[J].,2016,(02):331.[doi:10.13798/j.issn.1009-153X.2016.06.004]
[6]黄书岚 成于思 王 辉 汪超甲.FAK siRNA重组质粒的构建及其对胶质瘤U251细胞 增殖及侵袭能力的抑制作用[J].中国临床神经外科杂志,2016,(06):336.[doi:10.13798/j.issn.1009-153X.2016.06.006]
 HUANG Shu-lan,CHENG Yu-si,WANG Hui,et al.Construction of siRNA recombinant plasmid targeting focal adhesion kinase gene and its effect on the proliferation and invasiveness of human glioma U251cells[J].,2016,(02):336.[doi:10.13798/j.issn.1009-153X.2016.06.006]
[7]林 雨 张 恺 李 帅 杨学军.磁共振数字化手术单元在指导胶质瘤治疗中的作用[J].中国临床神经外科杂志,2016,(06):345.[doi:10.13798/j.issn.1009-153X.2016.06.009]
[8]戴黎明 徐成仕 王泽芬 曹长军 李志强.VEGF单抗对低氧环境下C6胶质瘤细胞侵袭性的影响[J].中国临床神经外科杂志,2016,(04):219.[doi:10.13798/j.issn.1009-153X.2016.04.009]
 DAI Li-ming,XU Cheng-shi,WANG Ze-fen,et al.Effect of nonoclonal antibody of VEGF on C6 glioma cells invasiveness under hypoxia and the role of FAK/Pyk2[J].,2016,(02):219.[doi:10.13798/j.issn.1009-153X.2016.04.009]
[9]彭泽生 田道锋 张申起 陈谦学.miR-370-3p对胶质母细胞瘤U87-MG细胞株增殖能力的影响[J].中国临床神经外科杂志,2016,(04):223.[doi:10.13798/j.issn.1009-153X.2016.04.010]
 PENG Ze-sheng,TIAN Dao-feng,ZHANG Shen-qi,et al.Effects of MircoRNA-370-3p on proliferation of glioma cell line U87-MG and its potential mechanism[J].,2016,(02):223.[doi:10.13798/j.issn.1009-153X.2016.04.010]
[10]冯 驰 郭双毅 程龙海 罗 杰.氯喹通过抑制自噬促进TRAIL诱导的胶质瘤细胞凋亡[J].中国临床神经外科杂志,2016,(04):227.[doi:10.13798/j.issn.1009-153X.2016.04.011]
 FENG Chi,GUO Shuang-yi,CHENG Long-hai,et al.Chloroquine promotes TRAIL-induced apoptosis of glioma cells through inhibition of autophagy[J].,2016,(02):227.[doi:10.13798/j.issn.1009-153X.2016.04.011]

备注/Memo

备注/Memo:
(2022-11-08收稿,2022-12-14修回)
基金项目:深圳市科创委基础研究(自由探索)(JCYJ20180307155043326)
更新日期/Last Update: 2022-03-31