参考文献/References:
[1] WANG Z, ZHANG H, XU S, et al. The adaptive transition of glioblastoma stem cells and its implications on treatments [J]. Signal Transduct Target Ther, 2021, 6(1): 124.
[2] CONDORELLI AG, EL HACHEM M, ZAMBRUNO G, et al. Notching up knowledge on molecular mechanisms of skin fibrosis: focus on the multifaceted Notch signalling pathway [J]. J Biomed Sci, 2021, 28(1): 36.
[3] AKIL A, GUTIERREZ-GARCIA AK, GUENTER R, et al. Notch signaling in vascular endothelial cells, angiogenesis, and tumor progression: an update and prospective [J]. Front Cell Dev Biol, 2021, 9: 642352.
[4] ZHOU B, LIN W, LONG Y, et al. Notch signaling pathway: architecture, disease, and therapeutics [J]. Signal Transduct Target Ther, 2022, 7(1): 95.
[5] FERREIRA A, ASTER JC. Notch signaling in cancer: complexity and challenges on the path to clinical translation [J]. Semin Cancer Biol, 2022, 85: 95-106.
[6] CANALIS E. Clinical and experimental aspects of notch receptor signaling: Hajdu-Cheney syndrome and related disorders [J]. Metabolism, 2018, 80: 48-56.
[7] TEODORCZYK M, SCHMIDT MHH. Notching on cancer's door: Notch signaling in brain tumors [J]. Front Oncol, 2014, 4: 341.
[8] AGGARWAL V, TULI HS, VAROL M, et al. NOTCH signaling: journey of an evolutionarily conserved pathway in driving tumor progression and its modulation as a therapeutic target [J]. Crit Rev Oncol Hematol, 2021, 164: 103403.
[9] BAZZONI R, BENTIVEGNA A. Role of Notch signaling pathway in glioblastoma pathogenesis [J]. Cancers (Basel), 2019, 11(3): 292.
[10] AYAZ F, OSBORNE BA. Non-canonical Notch signaling in cancer and immunity [J]. Front Oncol, 2014, 4: 345.
[11] SHABANI M, JAVANSHIR HT, BEREIMIPOUR A, et al. Contradictory effect of notch1 and notch2 on phosphatase and tensin homolog and its influence on glioblastoma angiogenesis [J]. Galen Med J, 2021, 10: e2091.
[12] LI Y, ZHOU XC, TAO L, et al. Notch1 signaling pathway promotes invasion, self-renewal and growth of glioma initiating cells via modulating chemokine system CXCL12/CXCR4 [J]. J Exp Clin Cancer Res, 2019, 38(1): 339.
[13] SHEN Y, CHEN H, ZHANG J, et al. Increased Notch signaling enhances radioresistance of malignant stromal cells induced by glioma stem/progenitor cells [J]. PLoS One, 2015, 10(11): e0142594.
[14] LIU J, WANG X, CHEN AT, et al. ZNF117 regulates glioblastoma stem cell differentiation towards oligodendroglial lineage [J]. Nat Commun, 2022, 13(1): 2196.
[15] LIANG W, GUO B, YE J, et al. Vasorin stimulates malignant progression and angiogenesis in glioma [J]. Cancer Sci, 2019, 110(8): 2558-2572.
[16] SENGUPTA S, MONDAL M, PRASASVI KR, et al. Differentiated glioma cell-derived fibromodulin activates integrin-dependent Notch signaling in endothelial cells to promote tumor angiogenesis and growth [J]. Elife, 2022, 11: e78972.
[17] JING X, YANG F, SHAO C, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment [J]. Mol Cancer, 2019, 18 (1): 157.
[18] QIANG L, WU T, ZHANG HW, et al. HIF-1alpha is critical for hypoxia-mediated maintenance of glioblastoma stem cells by activating Notch signaling pathway [J]. Cell Death Differ, 2012, 19(2): 284-294.
[19] MAN J, YU X, HUANG H, et al. Hypoxic induction of vasorin regulates Notch1 turnover to maintain glioma stem-like cells [J]. Cell Stem Cell, 2018, 22(1): 104-18 e6.
[20] GAO K, JI Z, SHE K, et al. Long non-coding RNA ZFAS1 is an unfavourable prognostic factor and promotes glioma cell progression by activation of the Notch signaling pathway [J]. Biomed Pharmacother, 2017, 87: 555-560.
[21] MACIACZYK D, PICARD D, ZHAO L, et al. CBF1 is clinically prognostic and serves as a target to block cellular invasion and chemoresistance of EMT-like glioblastoma cells [J]. Br J Cancer, 2017, 117(1): 102-112.
[22] ALAFATE W, XU D, WU W, et al. Loss of PLK2 induces acquired resistance to temozolomide in GBM via activation of notch signaling [J]. J Exp Clin Cancer Res, 2020, 39(1): 239.
[23] HERRERA-RIOS D, LI G, KHAN D, et al. A computational guided, functional validation of a novel therapeutic antibody proposes Notch signaling as a clinical relevant and druggable target in glioma [J]. Sci Rep, 2020, 10(1): 16218.
[24] HAN QF, LI WJ, HU KS, et al. Exosome biogenesis: machinery, regulation, and therapeutic implications in cancer [J]. Mol Cancer, 2022, 21(1): 207.
[25] SUN Z, WANG L, ZHOU Y, et al. Glioblastoma stem cell-derived exosomes enhance stemness and tumorigenicity of glioma cells by transferring Notch1 protein [J]. Cell Mol Neurobiol, 2020, 40(5): 767-784.
相似文献/References:
[1]常英男 王 策 赵天书.SOX2基因在胶质瘤中的表达及生物学作用[J].中国临床神经外科杂志,2016,(05):270.[doi:10.13798/j.issn.1009-153X.2016.05.005]
CHANG Ying-nan,WANG Ce,ZHAO Tian-shu..Expression of SOX2 gene and its biological role in human gliomas[J].,2016,(11):270.[doi:10.13798/j.issn.1009-153X.2016.05.005]
[2]赛 克 陈忠平.胶质瘤的疗效评价[J].中国临床神经外科杂志,2016,(06):321.[doi:10.13798/j.issn.1009-153X.2016.06.001]
[3]许 耿 路俊锋 杨 忠 施建斌 吴秋月 王 烨 庄冬晓 吴劲松.神经电生理监测技术在功能区胶质瘤术中的应用[J].中国临床神经外科杂志,2016,(06):323.[doi:10.13798/j.issn.1009-153X.2016.06.002]
XU Geng,LU Jun-feng,YANG Zhong,et al.Application of intraoperative neuroelectrophysiologic monitoring to gliomas resection in eloquent function brain regions[J].,2016,(11):323.[doi:10.13798/j.issn.1009-153X.2016.06.002]
[4]李剑峰 陈银生 赛 克 张湘衡 柯 超 杨群英 牟永告 许海雄 陈忠平.173例胶质瘤预后的影响因素分析[J].中国临床神经外科杂志,2016,(06):327.[doi:10.13798/j.issn.1009-153X.2016.06.003]
LI Jian-feng,CHEN Yin-sheng,SAI Ke,et al.Prognostic factors for gliomas: analysis of 173 cases[J].,2016,(11):327.[doi:10.13798/j.issn.1009-153X.2016.06.003]
[5]云德波 杨宇焦 张 逵 范润金 张 渊 杜贻庆.瘤周谷氨酸、天门冬氨酸水平与胶质瘤继发性
癫痫的相关性[J].中国临床神经外科杂志,2016,(06):331.[doi:10.13798/j.issn.1009-153X.2016.06.004]
YUN De-bo,YANG Yu-Jiao,ZHANG Kui,et al.Relationship of levels of glutamate and aspartate in peritumorous tissues with seizures in patients with gliomas[J].,2016,(11):331.[doi:10.13798/j.issn.1009-153X.2016.06.004]
[6]黄书岚 成于思 王 辉 汪超甲.FAK siRNA重组质粒的构建及其对胶质瘤U251细胞
增殖及侵袭能力的抑制作用[J].中国临床神经外科杂志,2016,(06):336.[doi:10.13798/j.issn.1009-153X.2016.06.006]
HUANG Shu-lan,CHENG Yu-si,WANG Hui,et al.Construction of siRNA recombinant plasmid targeting focal adhesion kinase gene and its effect on the proliferation and invasiveness of human glioma U251cells[J].,2016,(11):336.[doi:10.13798/j.issn.1009-153X.2016.06.006]
[7]林 雨 张 恺 李 帅 杨学军.磁共振数字化手术单元在指导胶质瘤治疗中的作用[J].中国临床神经外科杂志,2016,(06):345.[doi:10.13798/j.issn.1009-153X.2016.06.009]
[8]戴黎明 徐成仕 王泽芬 曹长军 李志强.VEGF单抗对低氧环境下C6胶质瘤细胞侵袭性的影响[J].中国临床神经外科杂志,2016,(04):219.[doi:10.13798/j.issn.1009-153X.2016.04.009]
DAI Li-ming,XU Cheng-shi,WANG Ze-fen,et al.Effect of nonoclonal antibody of VEGF on C6 glioma cells invasiveness under hypoxia and the role of FAK/Pyk2[J].,2016,(11):219.[doi:10.13798/j.issn.1009-153X.2016.04.009]
[9]彭泽生 田道锋 张申起 陈谦学.miR-370-3p对胶质母细胞瘤U87-MG细胞株增殖能力的影响[J].中国临床神经外科杂志,2016,(04):223.[doi:10.13798/j.issn.1009-153X.2016.04.010]
PENG Ze-sheng,TIAN Dao-feng,ZHANG Shen-qi,et al.Effects of MircoRNA-370-3p on proliferation of glioma cell line U87-MG and its potential mechanism[J].,2016,(11):223.[doi:10.13798/j.issn.1009-153X.2016.04.010]
[10]冯 驰 郭双毅 程龙海 罗 杰.氯喹通过抑制自噬促进TRAIL诱导的胶质瘤细胞凋亡[J].中国临床神经外科杂志,2016,(04):227.[doi:10.13798/j.issn.1009-153X.2016.04.011]
FENG Chi,GUO Shuang-yi,CHENG Long-hai,et al.Chloroquine promotes TRAIL-induced apoptosis of glioma cells through inhibition of autophagy[J].,2016,(11):227.[doi:10.13798/j.issn.1009-153X.2016.04.011]